Browse > Article

Effect of Pressure and Initial Polymer Resist Thickness on Low Temperature Nanoimprint Lithography  

Kim, Nam-Woong (서울대학교 기계항공공학부 대학원)
Kim, Kug-Weon (순천향대학교 기계공학과)
Sin, Hyo-Chol (서울대학교 기계항공공학부)
Publication Information
Transactions of the Korean Society of Machine Tool Engineers / v.18, no.1, 2009 , pp. 68-75 More about this Journal
Abstract
A major disadvantage of thermal nanoimprint lithography(NIL) is the thermal cycle, that is, heating over glass transition temperature and then cooling below it, which requires a significant amount of processing time and limits the throughput. One of the methods to overcome this disadvantage is to make the processing temperature lower Accordingly, it is necessary to determine the effects on the processing parameters for thermal NIL at reduced temperatures and to optimize the parameters. This starts with a clear understanding of polymer material behavior during the NIL process. In this work, the squeezing and filling of thin polymer films into nanocavities during the low temperature thermal NIL have been investigated based upon a two-dimensional viscoelastic finite element analysis in order to understand how the process conditions affect a pattern quality; Pressure and initial polymer resist thickness dependency of cavity filling behaviors has been investigated.
Keywords
Low Temperature Nanoimprint; Pressure; Initial Polymer Resist Thickness; Finite Element Method;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Chou, S., and Krauss, P., 1997, "Imprint Lithography with Sub-10nm Feature Size and High Throughput," Microelectron. Eng., Vol. 35, pp. 237-240.   DOI   ScienceOn
2 Hirai, Y., Konish, T., Yoshikawa, T., and Yoshida, S., 2004, "Simulation and Experimental Study of Polymer Deformation in Nanoimprint Lithography," J. Vac. Sci. Technol. B, Vol. 22, pp. 3288-3293.   DOI   ScienceOn
3 Son, J. W,. Song, N. H., Rhim, S. H., and Oh, S. I., 2007, "Prediction of Defects in Nano-imprint Lithography Using FEM Simulation," Key Eng. Mater., Vols. 345-346, pp. 665-668.   DOI
4 McLoughlin, J. R., and Tobolsky, A.V., 1952, "The Viscoelastic Behavior of Polymethyl Mechacrylate," Journal of Colloid Science, Vol. 7, pp. 555-568.   DOI   ScienceOn
5 Takahashi, M., Shen, M. C., Shen, Taylor, R. B., and Tobolsky, A.V., 1964, "Master Curves for Some Amorphous Polymers," J. Appl. Polym. Sci., Vol. 8, pp. 1549-1561.   DOI
6 Young, W. B., 2005, "Analysis of the Nanoimprint Lithography with a Viscous Model," Microelectron. Eng., Vol. 77, pp. 405-411.   DOI   ScienceOn
7 Khang, D. Y., and Lee, H. H., 2000, "Room temperature Imprint Lithography by Solvent Vapor Treatment," Appl. Phys. Lett., Vol. 76, No. 7, pp. 870-872.   DOI   ScienceOn
8 Rowland, H. D., and King, W. P., 2004, "Polymer Deformation and Filling Modes During Microembossing," J. Micromech. Microeng., Vol. 14, pp. 1625-1632.   DOI   ScienceOn
9 Guo, L. J., 2004, "Recent Progress in Nanoimprint Technology and Its Applications," J. Phys. D: Appl. Phys., Vol. 37, pp. R123-R141.   DOI   ScienceOn
10 Kim, N. W., Kim, K. W., and Sin, H.-C., 2007, "A Viscoelasitc Finite Element Analysis of Thermal Nanoimprint Lithography Process," Journal of the Microelectronics & Packaging Society, Vol. 14, No. 4, pp. 1-7.   과학기술학회마을   ScienceOn
11 Hirai, Y., Fujiwara, M., Okuno, T., Tanaka, Y., Endo, M., Irie, S., Nakagawa, K., and Sasago, M., 2001, "Study of the Resist Deformation in Nanoimprint Lithography," J. Vac. Sci. Technol. B, Vol. 19, pp. 2811-2815.   DOI   ScienceOn
12 Kim, K. W., and Kim, N. W., 2008, "Analytical Approach of Polymer Flow in Thermal Nanoimprint Lithography," Trans. of the KSMTE, Vol. 17, No. 3, pp. 20-26.   과학기술학회마을   ScienceOn
13 Cost, T. L. and Becker, E. B., 1970, "A Multidata Method of Approximate Laplace Transform Inversion," Int. J. Numer. Methods Eng., Vol. 2, pp. 207-219.   DOI
14 Alkaisi, M. M., Blaikie, R. J., and McNab, S. J., 2001, "Low Temperature Nanoimprint Lithography Using Silicon Nitride Molds," Microelectron. Eng., Vols. 57-58, pp. 367-373.   DOI
15 Juang, Y. J., Lee, L. J., and Koelling, K. W., 2002, "Hot Embossing in Microfabrication. Part I: Experimental," Polym. Eng. Sci., Vol. 42, pp. 539-550.   DOI   ScienceOn
16 Schift, H., and Heyderman, L. J. in: Sotomayor Torres C. M. (Ed.), 2003, Alternative Lithography, Kluwer Academic Plenum, New York.