• Title/Summary/Keyword: inhibition rate

Search Result 1,530, Processing Time 0.037 seconds

Morphological and Anatomical Response of Rice and Barnyardgrass to Herbicides under Various Cropping Patterns - I. Response to Pyrazolate (재배양식(栽培樣式)에 따른 수종(數種) 제초제(除草劑)에 대한 벼와 피의 해부형태적(解剖形態的) 반응차이(反應差異) - I. Pyrazolate에 대한 반응차이(反應差異))

  • Chon, S.U.;Guh, J.O.;Kuk, Y.I.
    • Korean Journal of Weed Science
    • /
    • v.15 no.1
    • /
    • pp.30-38
    • /
    • 1995
  • Soil-applied pre-emergence herbicide, pyrazolate(4-(2, 4-dichlorobenzoyl)-1, 3-dimethyl pyrazol-5-yl-p-toluene sulphonate) induced, twist effect of shoots of barnyardgrass under dry conditions, and etiolated leaf and stem of that under water condition. Plant height and root length of rice broadcast on soil surface were similar to the untreated control, but plant height of rice drilled in soil was more inhibited than root length as compared with the untreated control, while development of barnyardgrass seedling was severely inhibited at 20 days after application. The inhibition rate was much higher under water condition than under dry condition, but difference in rice and barnyardgrass did not abserve. However, growth of transplanted rice shown to increase to the untreated control. Shoot and root fresh weight of rice broadcast on soil surface was increase as compared with the untreated control, and that of rice drilled in soil was not affected whereas that of barnyardgrass was severely inhibited by 42% and 41%, respectively. Under dry condition at 20 days after pyrazolate application while root growth of rice broadcast on soil surface under water condition was deadly inhibited and development of barnyardgrass was almost completely inhibited. On the other hand, microscopic studies showed that constriction of mesophyll cell by destruction of chloroplast of barnyardgrass were occurred only under dry condition, whereas damage of rice and barnyardgrass under water and transplanting condition were not observed. Anatomical change in the meristernatic region of rice and barnyardgrass was not occurred, and similar to intact plant regardless of cropping patterns.

  • PDF

Sterilization of Neurospora Crassa by Noncontacted Low Temperature Atmospheric Pressure Surface Discharged Plasma with Dielectric Barrier Structure (유전체장벽 방전구조의 비접촉식 저온 대기압 면방전 플라즈마를 이용한 빵곰팡이의 살균효과)

  • Ryu, Young Hyo;Uhm, Han Sup;Park, Gyung Soon;Choi, Eun Ha
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.55-65
    • /
    • 2013
  • Sterilization of Neurospora crassa has been investigated in this research by using a surface air plasma with dielectric barrier discharged (DBD) structure under atmospheric pressure. The sinusoidal alternating current has been used in this experiment with discharge voltage of 1.4~2.3 kV. The phase difference between the voltage and current signals are found to be almost 80 degree due to the capacitive property of dielectric barrier. Temperature on the biomaterials has been minimized by radiating the heat with the air cooling system. It is noted that the substrate temperature remains under 37 degree for plasma exposure time of 10 minutes with operation of cooler system. It is found that the ozone, $O_3$, has been measured to be about 25~30 ppm within 1 cm region and to be about 5 ppm at the 150 cm downstream region away from the suface plasma. It is also noted that the nitric oxide, NO, and nitric dioxide, $NO_2$, are not nearly detected. Germination rate and mitochodrial activity of Neurospora crassa immersed in the deionized water have been found to be drastically decreased as the plasma treatment time and its electrical power are increased in this experiment. Here, the mitochondrial activity has been analyzed by MTT (3-(4,5-dimethy lthiazol-2yl)-2,5-diphenyl-2H-tetrazolium bromide) assay. However, sterilization of Neurospora crassa immersed in the Vogel's minimal media has been found to be low by plasma treatment, which is caused by surrounding background solution. This research shows the sterilization possibility of Neurospora crassa by using the noncontated surface DBD plasma, which is different from the plasma jet. This is mainly attibuted to the reactive species generated by the surface plasma, since they play a major role for inhibition of micobes such as Neurospora crassa.

Physiological Activity and Nutritional Composition of Pleurotus Species (느타리속 버섯류의 영양성분 및 생리활성)

  • Um, Su-Na;Jin, Gyoung-Ean;Park, Kye-Won;Yu, Young-Bok;Park, Ki-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.90-96
    • /
    • 2010
  • In this study, the anti-oxidant, anti-tumorigenic, anti-hypertensive, anti-thrombic, anti-diabetic, and anti-inflammatory properties of 18 different species of genus Pleurotus were investigated. In addition, the amino acid, $\beta$-glucan, and polyphenol content were also measured. All species contained more than 20 mg% of polyphenol with the highest contents found in Pleurotus cornucopiae var. citrinopileatus (yellow pleurotus) ($39.13{\pm}0.82\;mg%$). The $\beta$-glucan contents was also the highest in yellow Pleurotus ($37.67{\pm}0.22%$) followed by Won-Hyeong1 (C, $28.75{\pm}0.61%$) and Jang-an PK (A, $27.95{\pm}0.33%$). The yellow Pleurotus exhibited the highest antioxidant activity as assessed by the DPPH scavenging rate with an $IC_{50}$ value of $2.94{\pm}0.44\;mg/mL$. Ethanol extracts from the yellow Pleurotus treated at 1% concentration showed cytotoxic activity up to 36.9% in the human embryonic kidney 293T cell lines. The yellow Pleurotus also showed the highest inhibitory effects on ACE activity ($60.52{\pm}0.2%$). Finally, the yellow Pleurotus exhibited anti-diabetic and anti-inflammatory properties as shown by inhibition of $\alpha$-amyloglucosidase activity ($50.5{\pm}0.8%$) and nitric oxide production ($68.4{\pm}0.3%$). Taken together, our data indicate the yellow pleurotus is a promising functional food ingredients.

Effect of D-Fructose on Sugar Transport Systems in Trichoplusia ni Cells and Photolabeling of the Trichoplusia ni Cell-Expressed Human HepG2 Type Glucose Transport Protein (Trichoplusia ni 세포에 내재하는 당 수송체에 D-fructose가 미치는 효과와 Trichoplusia ni 세포에 발현된 사람 HepG2형 포도당 수송 단백질의 photolabelling)

  • Lee, Chong-Kee
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.86-91
    • /
    • 2014
  • Trichoplusia ni cells are used as a host permissive cell line in the baculovirus expression system, which is useful for large-scale production of human sugar transport proteins. However, the activity of endogenous sugar transport systems in insect cells is extremely high. Therefore, the transport activity resulting from the expression of exogenous transporters is difficult to detect. Furthermore, very little is known about the nature of endogenous insect transporters. To exploit the expression system further, the effect of D-fructose on 2-deoxy-D-glucose (2dGlc) transport by T. ni cells was investigated, and T. ni cell-expressed human transporters were photolabeled with [$^3H$] cytochalasin B to develop a convenient method for measuring the biological activity of insect cell-expressed transporters. The uptake of 1 mM 2dGlc by uninfected- and recombinant AcMPV-GTL infected cells was examined in the presence and absence of 300 mM of D-fructose, with and without $20{\mu}M$ of cytochalasin B. The sugar uptake in the uninfected cells was strongly inhibited by fructose but only poorly inhibited by cytochalasin B. Interestingly, the AcMPV-GTL-infected cells showed an essentially identical pattern of transport inhibition, and the rate of 2dGlc uptake was somewhat less than that seen in the non-infected cells. In addition, a sharply labeled peak was produced only in the AcMPV-GTL-infected membranes labeled with [$^3H$] cytochalasin B in the presence of L-glucose. No peak of labeling was seen in the membranes prepared from the uninfected cells. Furthermore, photolabeling of the expressed protein was completely inhibited by the presence of D-glucose, demonstrating the stereoselectivity of labeling.

Inhibitory Effect of Rice Extract on the Chemically Induced Mutagenesis (쌀 추출물의 돌연변이 억제효과)

  • Chun, Hyang-Sook;Kim, In-Ho;Kim, Young-Jin;Kim, Kil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.188-194
    • /
    • 1994
  • The inhibitory effects of rice extract on mutagenicity induced by 3-amino-1,4-dimethyl-5H-pyrido [4,3-b]indole(Trp-P-1), 3-amino-1-methyl-5H-pyrido [4,3-b]indole(Trp-P-2), sodium azide(SA), 2-nitrofluorene(2NF), mitomycin C(MMC), aflatoxin $B_1(AFB_1)$ and 4-nitroquinoline oxide(4-NQO) were investigated using Salmonella typhimurium reversion assay, SOS chromotest and spore rec-assay. In Salmonella typhimurium reversion assay, methanol extract from brown rice (Illpumbyeo, Japonica variety) showed the highest inhibitory effect among other extracting solvent including hexane, chloroform and water. Methanol extract showed stronger inhibitory effect, above 85%, on indirect-acting mutagens(Trp-P-1, Trp-P-2 and $AFB_1$) than those on direct-acting mutagens(4-NQO, 2NF). In SOS chromotest, methanol extracts showed $77.6{\sim}88.9%$ effects on SOS function induced by Trp-P-1, Trp-P-2, $AFB_1$ and 4-NQO. In spore rec-assay, methanol extracts inhibited the mutagenicity induced by $AFB_1$ and MMC. As the concentration of methanol extract increased, inhibitory effect on mutagenicity increased but reached at steady state as inhibition rate of 90% when the concentration was above 5 mg/plate. In inhibitory effects of methanol extracts by various rice varieties, all of 11 varieties turned out to have inhibitory effect on mutagenicity. There was no significant difference (p>0.05) in inhibitory effect of methanol extracts between brown and white rice against Trp-P-1, but showed difference (p<0.05) against 4-NQO.

  • PDF

Anti-hepatotoxic Activity of Chrysanthemum coronarium L. var. spatiosum Extract (쑥갓의 간독성 보호작용)

  • Kang, Hyun-Jung;Lee, Eun-Ju;Sung, Sang-Hyun;Kim, Young-Choong;Song, Eun-Sook;Park, Mi-Jung;Lee, Heum-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.138-143
    • /
    • 2003
  • Total methanolic extract of Chrysanthemum coronarium L. var. spatiosum (Compositae) was revealed to have anti-hepatotoxic activity against galactosamine-induced toxicity on primary cultured rat hepatocytes. After successive partitioning with chloroform, n-butanol, and water, the chloroform fraction showed a significant inhibition activity of 51% at 50 ppm, compared with that of silybin, 45.9% at $100\;{\mu}M$. The chloroform fraction was subjected to silica gel column chromatography and yielded active CH-II, CH-V and CH-VI subfractions, and the anti-hepatotoxic activity of these subfractions were 47.6, 56.3, and 23.2%, respectively, at 50 ppm. Total glutathione contents of CH-II, CH-V, and CH-VI increased by 49.8, 43.9, and 47.5% of the control, respectively at 50 ppm, whereas that of silymarin was, 59.7% at $100\;{\mu}M$ after challenged with galactosamine. The ratio of (reduced glutathione) / (total glutathione) in CH-II, CH-V and CH-VI subfraction showed similar values of $0.86{\sim}0.87$ at 50 ppm, whereas that of silymarin was, 0.85 at $100\;{\mu}M$. The incorporation of $[^3H]-uridine$ uptake into RNA was not affected by these active subfractions.

Marine Ecotoxicological Evaluation on HNS Spill Accident : Nitric Acid Spill Case Study (HNS 유출사고가 해양생물에 미치는 생물독성 영향평가 : HNO3 유출사고 대상)

  • Kim, Tae-Won;Kim, Young Ryun;Jo, So Eun;Son, Min Ho;Lee, Moonjin;Oh, Sangwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.655-661
    • /
    • 2015
  • This study intends to evaluate the effect of nitric acid($HNO_3$) spill accidents on the marine ecosystem, while $HNO_3$ is known as one of the typical HNS. For this purpose, we performed (1) the growth inhibition test by using phytoplankton(Skeletonema costatum), (2) acute and chronic toxicity test by using invertebrate(Brachionus plicatilis and Monocorphium acherusicum), (3) fish(Cyprinodon variegatus) and (4) bacteria(Vibrio fischeri). In these tests, we observed the (1) pH changes induced by the nitric acid spill and (2) changes in nitrate($NO_3$) concentration disassociated from nitric acid after the accident, respectively. The toxicity test result on pH changes induced by $HNO_3$ shows that the no observed effect concentration(NOEC), lowest observed effect concentration(LOEC) and 50 % effect concentration($72h-EC_{50}$) values of M. acherusicum are pH 7 (0.3 mM), pH 5(1.1 mM) and pH 5.2(1.4 mM), respectively, indicating that M. acherusicum is the most sensitive species. The chronic toxicity test (population growth rate test) on $NO_3{^-}$ of B. plicatilis show that the NOEC, LOEC and $96h-EC_{50}$ are 5.9 mM, 11.8 mM and 32.6 mM, respectively, indicating that B. plicatilis is the most sensitive species. In conclusion, toxic effecst on the marine organism caused by the nitric acid spill accident is determined to be so slightly except for the most adjacent area of the ship in pH scale and such concentration of nitrate, to the extent of directly influencing the survival and reproduction of the marine organism, is determined practically not to be applicable in the typical accidents in the sea.

Quality characteristics of Yanggaeng with Momordica charantia powder (여주 분말을 첨가한 양갱의 품질 특성)

  • Lee, Seon-Ho;Hong, Eun-Jin;Cho, Young-Je
    • Food Science and Preservation
    • /
    • v.22 no.3
    • /
    • pp.335-344
    • /
    • 2015
  • The objective of this study was to determine the rheological characteristics and sensory evaluation of yanggaeng by using the functional properties of Momordica charantia. Dried Momordica charantia was roasted at $180^{\circ}C$ to remove its bitter taste. The results of the study were as follows : The phenolic compound of Momordica charantia was $6.30{\pm}0.17mg/g$ in water extracts, which was the highest extractive rate. The anti-oxidant activity of non-roasted and roasted samples was determined in various phenolic concentrations at $50{\sim}200{\mu}g/mL$. The DPPH activities of non-roasted and roasted Momordica charantia water and ethanol extracts were 74.06~92.71% and 86.06~94.07%, respectively. The ABTS were 36.26~98.03% and 67.02~99.60% in water and ethanol extracts, respectively. The anti-oxidant protection factor of water and ethanol extracts were 2.19~2.25 PF and 2.20~2.36 PF respectively, and TBARS were 13.81~40.97% and 23.32~82.47%, respectively. The anti-oxidant activity of ethanol extracts was higher than that of water extracts at low phenolics concentration of $50{\mu}g/mL$, while the roasted sample was higher than the sample that was not roasted. The ${\alpha}$-glucosidase inhibition activity of non-roasted Momordica charantia ethanol extracts was higher than that of water extracts, showing that there were increasing pattern depending on the increases in the phenolics concentration of Momordica charantia. The texture, such as hardness, springiness, cohesiveness, chewiness and color changed in proportion to the concentration of Momordica charantia powder. Moreover sensory characteristics, such as color, flavor, taste, texture and overall acceptability of the non-roasted sample changed in proportion to the concentration of Momordica charantia powder. However, in the roasted sample, the sensory characteristics was improved at a lower concentration (below 1%). Thus, when the yanggang was prepared by Momordica charantia powder as a minor ingredient, it would be desirable to add it after roasting, in consideration of its functional and sensory properties, and at appropriate concentration on below 1%.

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.

Effects of clomiphene citrate on ovarian function and embryo developmental capacity in the rat (랫드에 있어서 클로미펜 시트레이트가 난소기능 및 수정란 발육성에 미치는 영향)

  • Yun, Young-won;Kwun, Jong-kuk
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.1
    • /
    • pp.15-24
    • /
    • 1992
  • The effects of CC the ovulatory response, oocyte normality, ovarian steroidogenesis and subsequent embryo developmental potential were examined in PMSG-treated rats. On Days of 25~27 of age, immature female Sprague Dawley rats were treated with three different doses(0.05, 0.1 or 1.0mg /day) of clomiphene citrate or vehicle. The females subsequently received 4IU PMSG on Day 28 and/or 10IU hCG on Day 30, and were killed on Day 31. Some females given 0.1mg CC or vehicle with 4IU PMSG were then mated and killed on Days 2, 3, 4 and 5 of pregnancy. Compared to vehicle(control) group, by increasing the doses of CC, there were a significant decrease in the ovulatory response as judged by both the proportion of rats ovulating and the mean number of oocytes per rat and a marked reduction of ovarian weight. The increasing doses of CC substantially promoted the degeneration(%) of oocytes ovulating in a dose-dependent manner. The CC-mediated inhibitions of the ovulatory response and ovarian weight were oompletely overcome by a subsequent treatment of hCG. Increasing doses of CC resulted in a siginificant elevation of serum estradiol with the decreased levels of progesterone and androgens. The additive treatment with hCG was effective to reduce the elevation of estradiol and to increase the reduction of progesterone produced by high dose(1.0mg) of CC. The preimplantation embryos recovered from 0.1mg CC-treated pregnant rats demonstrated a progressive early loss from Day 3 of pregnancy with a significant increase in the percentage of degeneration during all periods examined, compared to controls. The rate of progressive embryo cleavage in the CC-treated rats were slower than that in controls from Day 3 of pregnancy. Additionally, the percentage of the cleaved embryos recovered from the CC-treated rats remained significantly lower consistently from Day 2 of pregnancy, compared to control regimen. These results demonstrate a possible mechanism of CC-mediated inhibition of ovulatory response in the rats which may include the attenuation or blockade of the endogenous secretion of gonadotropins and also suggest that its detrimental effects observed on oocyte normality and embryonic development may be caused by abnormal follicular steroidogenesis( especially elevated estradiol) preceding fertilization.

  • PDF