Physiological Activity and Nutritional Composition of Pleurotus Species

느타리속 버섯류의 영양성분 및 생리활성

  • Um, Su-Na (Department of Food Science & Biotechnology, Sungkyunkwan University) ;
  • Jin, Gyoung-Ean (Department of Food Science & Biotechnology, Sungkyunkwan University) ;
  • Park, Kye-Won (Department of Food Science & Biotechnology, Sungkyunkwan University) ;
  • Yu, Young-Bok (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Park, Ki-Moon (Department of Food Science & Biotechnology, Sungkyunkwan University)
  • 엄수나 (성균관대학교 식품생명공학과) ;
  • 진경언 (성균관대학교 식품생명공학과) ;
  • 박계원 (성균관대학교 식품생명공학과) ;
  • 유영복 (농촌진흥청) ;
  • 박기문 (성균관대학교 식품생명공학과)
  • Received : 2009.07.01
  • Accepted : 2009.11.16
  • Published : 2010.02.28

Abstract

In this study, the anti-oxidant, anti-tumorigenic, anti-hypertensive, anti-thrombic, anti-diabetic, and anti-inflammatory properties of 18 different species of genus Pleurotus were investigated. In addition, the amino acid, $\beta$-glucan, and polyphenol content were also measured. All species contained more than 20 mg% of polyphenol with the highest contents found in Pleurotus cornucopiae var. citrinopileatus (yellow pleurotus) ($39.13{\pm}0.82\;mg%$). The $\beta$-glucan contents was also the highest in yellow Pleurotus ($37.67{\pm}0.22%$) followed by Won-Hyeong1 (C, $28.75{\pm}0.61%$) and Jang-an PK (A, $27.95{\pm}0.33%$). The yellow Pleurotus exhibited the highest antioxidant activity as assessed by the DPPH scavenging rate with an $IC_{50}$ value of $2.94{\pm}0.44\;mg/mL$. Ethanol extracts from the yellow Pleurotus treated at 1% concentration showed cytotoxic activity up to 36.9% in the human embryonic kidney 293T cell lines. The yellow Pleurotus also showed the highest inhibitory effects on ACE activity ($60.52{\pm}0.2%$). Finally, the yellow Pleurotus exhibited anti-diabetic and anti-inflammatory properties as shown by inhibition of $\alpha$-amyloglucosidase activity ($50.5{\pm}0.8%$) and nitric oxide production ($68.4{\pm}0.3%$). Taken together, our data indicate the yellow pleurotus is a promising functional food ingredients.

일반 느타리 13품종과 색상 느타리 5품종을 사용하여 아미노산 및 polyphenol, $\beta$-glucan 함량을 분석하고, 생리활성으로 항산화 및 항암, 항고혈압, 항혈전, 항당뇨, 항염활성을 측정하였다. 느타리버섯 18종의 아미노산 분석결과 전반적으로 감칠맛을 내는 glutamic acid 함량이 비교적 많이 함유되어 있었고, 필수아미노산 성분도 고르게 분포되어 있었다. Polyphenol 함량에서는 전품종에서 20 mg% 함량이상을 나타냈으며, 노랑느타리(R)가 $39.13{\pm}0.82\;mg%$로 가장 높았다. $\beta$-glucan 함량은 노랑느타리(R)에서 $37.67{\pm}0.22%$로 가장 높았으며, 그 외에 원형1(C), 장안PK(A)에서 각각 $28.75{\pm}0.61%$, $27.95{\pm}0.33%$의 순으로 나타났다. 전자공여능에서는 노랑느타리(R) 버섯의 DPPH $IC_{50}$값이 $2.93{\pm}0.44\;mg/mL$로 가장 낮아 항산화 활성이 가장 우수한 것으로 나타났으며, 세포독성 실험에서는 노랑느타리(R) 에탄올 추출물 1% 처리시 신장 암세포에 대해 36.90%의 세포 억제율을 보였다. ACE 저해활성의 경우 노랑느타리(R) 에탄올 추출물 1%농도에서 $60.5{\pm}0.2%$의 저해율이 측정되었고, 흑평(B) $56.7{\pm}1.1%$, 여름(H) $52.4{\pm}1.3%$ 수준으로 나타났다. 항혈전 활성에서는 3%농도에서 흑평(B)과 삼복(G)을 제외한 나머지 느타리버섯 에탄올 추출물에서 50%이상의 용해 활성을 보였으며 노랑느타리(R)에서 거의 plasmin과 동등한 활성을 나타냈다. 항당뇨 활성에서는 노랑느타리(R)의 경우 $50.5{\pm}0.8%$의 비교적 높은 효소저해율이 측정되었고, 항염활성에서는 노랑느타리(R)에서 $68.4{\pm}0.3%$의 억제율이 측정되었다. 이상의 결과로 일반 느타리 13 품종과 육종 재배된 색상 느타리 5품종 중 노랑느타리(R)가 가장 우수한 생리활성을 나타내 향후 기능성 소재로의 활용가능성이 기대되었다.

Keywords

References

  1. Kim HS, Ha HC, Kim TS. Research and prospects in new functional mushroom-Tremella fuciformis, Grifora frondosa, and Hypsizigus marmoreus. Food Sci. Ind. 36: 42-46 (2003)
  2. Hong JS, Kim TY. Contents of free-sugars & free-sugar alcohols in Pleurotus ostreatus, Lentinus edods, Agaricus bisporus. Korean J. Food Sci. Technol. 20: 459-462 (1988)
  3. Yang HC, Song CH, Kweon MH. Mycelial new material, food functional technology. Hanlimwon, Seoul, Korea. pp. 187-189 (1996)
  4. Jung IC, Park S, Park KS, Ha HC, Kim SH, Kwon YI, Ha HC. Antioxidative effect of fruit body and mycelial extracts of Pleurotus ostreatus. Korean J. Food Sci. Technol. 28: 464-469 (1996)
  5. Hossain S, Hashimoto M, Choudhury EK, Alam N. Dietary mushroom Pleurotus ostreatus ameliorates atherogenic lipid in hypercholesterolaemic rats. Clin. Exp. Pharmacol. P. 30: 470-475 (2003) https://doi.org/10.1046/j.1440-1681.2003.03857.x
  6. Lillian B, Paula B, Daniela M, Susana C, Beatriz O, Isabel C. Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chem. 105: 140-145 (2007) https://doi.org/10.1016/j.foodchem.2007.03.052
  7. Bose SR. Campestrin, the antibiotics of Psalliota campestris. Nature 175: 468 -468(1955)
  8. Kim HJ, Ahn MS, Kim GH, Kang MH. Anti-cancer activity of Lentinus edoeds and Pleurotus astreatus. Korean J. Food Sci. Technol. 30: 702-708 (1998)
  9. Blois MS. Antioxidant determination by the use of a stable free radical. Nature 181: 1191-1200 (1958)
  10. Kotakenara E, Kushiro M, Zhang H, Sugawara T, Nagao K. Carotenoids affect proliferation of human prostate cancer cells. J. Food Sci. Nutr. 131: 3303-3306 (2001)
  11. Cushman DW, Cheung HS. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20: 1637-1648 (1971) https://doi.org/10.1016/0006-2952(71)90292-9
  12. Astrup A, Mullertz S. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40: 3446-351 (1952)
  13. Bano Z, Rajarathnam S. Pleurotus mushrooms. Part II. Chemical composition, nutritional value, post-harvest physiology, preservation, and role as human food. Crit. Rev. Food Sci. 27: 87-158 (1988) https://doi.org/10.1080/10408398809527480
  14. Durkee AB, Thivierge PA. Ferulic acid and other phenolics in oat seeds. J. Food Sci. 42: 551-558 (1977) https://doi.org/10.1111/j.1365-2621.1977.tb01547.x
  15. Kozlowska H, Rotkiewicz DA, Zadernowski R, Sosulski FW. Phenolic acids in rapeseed and mustard. J. Am. Oil Chem. Soc. 60: 1119-1131 (1983) https://doi.org/10.1007/BF02671339
  16. Cooney RV, Ross PD. N-nitrosation and nonitration of morpholine by nitrogen dioxide in aqueous solution: Effects of vanillin and related phenols. J. Agr. Food. Chem. 35: 789-798 (1978)
  17. Kim HG. Development of processed foods from mushroom. Korea Food Res. Inst., Korea. pp. 33-96 (1997)
  18. Gardner PR, Fridovich I. Superoxide sensitivity of Escherichia coli 6-phosphogluconate dehydratase. J. Biol. Chem. 266: 1478-1783 (1991)
  19. Song JH, Lee HS, Hwang JK, Chung TY, Hong SR, Park LM. Physiological activities of Phellinus ribis extracts. J. Food Sci. Technol. 35: 690-695 (2003)
  20. Nakajima A, Ishida T, Koga M, Takeuchi M. Effect of hot water extract from Agaricus blazei Murill on antibody producing cells in mice. Int. Immunopharmacol. 2: 1205-1211 (2002) https://doi.org/10.1016/S1567-5769(02)00056-5
  21. Miura T, Ohno N, Miura NN, Shimada S, Yadomae T. Inactivation of a particle $\beta$-glucan by proteins in plasma and serum. Biol. Pharm. Bull. 20: 1103-1107 (1997) https://doi.org/10.1248/bpb.20.1103
  22. Kajimura M, Suga T. Research and development of functional food including superfine BETA-glucan (Lentinan). Chemical Industry 55: 466-475 (2004)
  23. Lee BW, Park KM. Anti-tumor activity of protein-bound polysaccharides extracted from mycelia of Lentinus edodes. Korean J. Food Sci. Technol. 30: 665-671 (1998)
  24. Ahn WS, Kim DJ, Chae GT, Lee JM, Bae SM, Sin JI, Kim TW, Namkoong SE, Lee IP. Natural killer cell activity and quality of life were improved by consumption of a mushroom extract, Agaricus blazei Murill Kyowa, in gynecological cancer patients undergoing chemotherapy. Int. J. Gynecol. Cancer 14: 589-594 (2004) https://doi.org/10.1111/j.1048-891X.2004.14403.x
  25. Kim BK, Park EK, Shim MJ. Studies on constituents of higher fungi of Korea, antineoplastic activities of Coriolus versicolor Qel, Pleurotus ostreatus Kummer and Lentinus edodes Sing. Arch. Pharm. Res. 2: 145-151 (1979) https://doi.org/10.1007/BF02959042
  26. Hagiwara SY, Takahashi M, Shen Y, Kaihou S, Tomiyama T, Yazawa M, Tamai Y, Sin Y, Kazusaka A, Terazawa M. A phytochemical in the edible tamogi-take mushroom, D-mannitol, inhibits ACE activity and lowers the blood pressure of spontaneously hypertensive rats. Biosci. Biotech. Bioch. 69: 1603-1605 (2005) https://doi.org/10.1271/bbb.69.1603
  27. Kim YE, Kwon EK, Han IH, Ku KH. Antioxidant activity, fibrinolysis, and angiotensin I converting enzyme inhibitory activity of pine mushroom juice. J. Korean Soc. Food Sci. Nutr. 37: 535-541 (2008) https://doi.org/10.3746/jkfn.2008.37.5.535
  28. Choi HS, Cho HY, Yang HC, Ra KS, Suh HJ. Angiotensin I converting enzyme inhibitor from Grifola frondosa. Food Res. Int. 34: 177-182 (2001) https://doi.org/10.1016/S0963-9969(00)00149-6
  29. Lee DH, Kim JH, Cheong JC, Gong WS, Yoo YB, Park JS, Yoo CH, Lee JS. Screening of mushrooms having angiotensin I converting enzyme inhibitor. Korean J. Mycol. 31: 148-154 (2003) https://doi.org/10.4489/KJM.2003.31.3.148
  30. Lee KY, Kim JH, Son JR, Lee JS. Detection and extraction condition of physiological functional compounds from bran of Heugjinju rice. Korean J. Postharv. Sci. Technol. 8: 296-301 (2001)
  31. Park KJ, Oh YJ, Lee SY, Kim HS, Ha HC. Anti-diabetic effect of crude polysaccharides from Grifola frondosa in KK-$A^{y}$ diabetic mouse and 3T3-L1 adipocyte. Korean J. Food Sci. Technol. 39: 330-335 (2007)
  32. Higuchi M, Hisgahi N, Taki H, Osawa T. Cytolutic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J. Immunol. 144: 1425-1431 (1990)
  33. Jang HJ, Kim AK, Pyo MY, Yang KS. Inhibitors of nitric oxide synthesis from Phellinus pini in murine macrophages. Yakhak Hoeji 51: 430-434 (2007)