Browse > Article
http://dx.doi.org/10.5757/JKVS.2013.22.2.55

Sterilization of Neurospora Crassa by Noncontacted Low Temperature Atmospheric Pressure Surface Discharged Plasma with Dielectric Barrier Structure  

Ryu, Young Hyo (Plasma Bioscience Research Center, Kwangwoon University)
Uhm, Han Sup (Plasma Bioscience Research Center, Kwangwoon University)
Park, Gyung Soon (Plasma Bioscience Research Center, Kwangwoon University)
Choi, Eun Ha (Plasma Bioscience Research Center, Kwangwoon University)
Publication Information
Journal of the Korean Vacuum Society / v.22, no.2, 2013 , pp. 55-65 More about this Journal
Abstract
Sterilization of Neurospora crassa has been investigated in this research by using a surface air plasma with dielectric barrier discharged (DBD) structure under atmospheric pressure. The sinusoidal alternating current has been used in this experiment with discharge voltage of 1.4~2.3 kV. The phase difference between the voltage and current signals are found to be almost 80 degree due to the capacitive property of dielectric barrier. Temperature on the biomaterials has been minimized by radiating the heat with the air cooling system. It is noted that the substrate temperature remains under 37 degree for plasma exposure time of 10 minutes with operation of cooler system. It is found that the ozone, $O_3$, has been measured to be about 25~30 ppm within 1 cm region and to be about 5 ppm at the 150 cm downstream region away from the suface plasma. It is also noted that the nitric oxide, NO, and nitric dioxide, $NO_2$, are not nearly detected. Germination rate and mitochodrial activity of Neurospora crassa immersed in the deionized water have been found to be drastically decreased as the plasma treatment time and its electrical power are increased in this experiment. Here, the mitochondrial activity has been analyzed by MTT (3-(4,5-dimethy lthiazol-2yl)-2,5-diphenyl-2H-tetrazolium bromide) assay. However, sterilization of Neurospora crassa immersed in the Vogel's minimal media has been found to be low by plasma treatment, which is caused by surrounding background solution. This research shows the sterilization possibility of Neurospora crassa by using the noncontated surface DBD plasma, which is different from the plasma jet. This is mainly attibuted to the reactive species generated by the surface plasma, since they play a major role for inhibition of micobes such as Neurospora crassa.
Keywords
Dielectric barrier discharge; Low temperature atmospheric pressure surface discharged; Plasma; Neurospora crassa; Sterilization; Reactive species;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. C. Montie, K. Kelly-Wintenberg, and J. R. Roth, IEEE. Trans. Plasma Sci. 28, 41 (2000).   DOI   ScienceOn
2 K. Kelly-Wintenburg, D. M. Sherman, P. P. Y. Tsai, R. B. Gardi, F. Karakaya, Z. Chen, J. R. Roth, and T. C. Montie, IEEE. Trans. PlasmaSci. 28, 64 (2000).   DOI   ScienceOn
3 E. Stoffels, A. J. Flikweert, W. W. Stoffels, and G. M. W. Kroesen, PlasmaSources Sci. Technol. 11, 383 (2002).
4 R. E. J. Sladek, E. Stoffels, R. Walraven, P. J. A. Tielbeek, and R. A. Koolhoven, IEEE. Trans. PlasmaSci. 32, 1540 (2004).   DOI   ScienceOn
5 M. Moisan, J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian, and L'H. Yahia, Int. J. Pharmaceutics, 226, 1 (2002).
6 B. J. Park, D. H. Lee, J. C. Parka, I. S. Lee, K. Y. Lee, S. O. Hyun, M. S. Chun, and K. H. Chung, Phys. Plasmas, 10, 4539 (2003).   DOI   ScienceOn
7 T. Akitsu, H. Ohkawa, M. Tsuji, H. Kimura, and M. Kogoma, Surf. Coating Technol. 193, 29 (2005).   DOI   ScienceOn
8 M. Laroussi and X. Lu, Appl. Phys. Lett. 87, 113902 (2005).   DOI   ScienceOn
9 D. C. Wolf, T. H. Dao, H. D. Scott, and T. L. Lavy. Journal of Environmental Quality 18, 39-44 (1989).
10 A. Poiata, I. Motrescu, A. Nastuta, D. E. Creanga, and G. Popa, Journal of Electrostatics, 68, 128, (2010).   DOI   ScienceOn
11 Y. J. Hong, C. J Nam, K. B. Song, G. S. Cho, H. S. Uhm, D. I. Choi, and E. H. Choi, Jinst. 15, 13 (2011).
12 M. Guoa, Y. Xub, and M. Gruebele. PNAS. 10. 1073. 1201797109 (2012).   DOI
13 L. Lighezan, R. Georgieva, and A. Neagu, Physica. Scripta. 86, 035801 (2012).   DOI
14 宗宮 功, 新版 Ozone 利用의 新技術, (三琇書房, 東京大, 1993).
15 D. Gerlier and N. Thomasset, Journal of Immunological Methods, 94, 57 (1986).   DOI   ScienceOn
16 G. Park, Y. H. Ryu, Y. J. Hong, E. H. Choi, and H. S. Uhm, Appl. Phys. Lett. 100, 063703 (2012).   DOI   ScienceOn
17 E. S. Jacobson, E. Hove, and H. S. Emery, Infection and Immunity 63, 4944 (1995).
18 C. Echavarri-Erasuna and E. A. Johnson, Applied Mycology and Biotechnology 2, 45 (2002).   DOI
19 M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (John Wiley & Sons Inc, San Francisco, CA, 1994), p. 757.
20 K. S. Roh, JLS. 20, 1667 (2010).   DOI   ScienceOn
21 C. B. Park, IEEK. 4, 28 (2001).
22 D. S. Kim and Y. S. Park, KSEH. 3, 37 (2011).
23 H. S. Uhm, J. Korean Vac. Soc. 15, 117 (2006).
24 M. Laroussi, Plasma Process. Polym, 2, 391 (2005).   DOI   ScienceOn
25 R. Brandenburg, J. Ehlbeck, M. Stieber, Th. von Woedtke, J. Zeymer, O. Schluter, and K. D. Weltmann, Plasma Phys, 47, 72 (2007).   DOI   ScienceOn
26 K. D. Weltmann, R. Brandenburg, Th. Von Woedtke, J. Ehlbeck, R. Foest, M. Stieber, and E. Kindel, J. Phys. D. Appl. Phys. 41, 194008 (2008).   DOI   ScienceOn
27 G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, Plasma Process. Polymers, 5, 503 (2008).   DOI   ScienceOn
28 K. D. Weltmann, E. Kindel, T. von Woedtke, M. Hahnel, M. Stieber, and R. Brandenburg, PureAppl. Chem. 82, 1223 (2010).   DOI   ScienceOn
29 K. D. Weltmann, T. von Woedtke, R. Brandenburg, and J. Ehlbeck, Chem. Listy 102, 1450 (2008).
30 G. E. Morfill, M. G. Kong, and J. L. Zimmermann, New J. Phys. 11 (2009).
31 R. Ben Gadri, J. R. Roth, T. C. Montie, K. Kelly-Wintenberg, P. P. Tsai, D. J. Helfritch, P. Feldman, D. M. Sherman, F. Karakaya, and Z. Chen, Surf. Coat. Technol. 131, 528 (2000).   DOI   ScienceOn
32 R. Brandenburg, U. Krohmann, M. Stieber, K. D. Weltmann, T. V. Woedtke, and J. Ehlbeck, Plasma Assisted Decontamination of Biological and Chemical Agents (Springer, New York/Heidelberg, 2008), pp. 51-63.
33 C. Cheng, P. Liu, L. Xu, L. Y. Zhang, R. J. Zhan, and W. R. Zhang, Chin. Phys. 15, 1544 (2006).   DOI   ScienceOn
34 P. Muranyi, J. Wunderlich, and M. Heise, Journal of Applied Microbiology 103, 1535 (2007).   DOI   ScienceOn
35 F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang, and M. G. Kong, Plasma Process. Polym. 5, 322 (2008).   DOI   ScienceOn
36 M. Moisan, J. Barbeau, M. C. Crevier, J. Pelletier, N. Philip, and B. Saoudi, Pure Appl, Chem. 74, 3, 349, (2002).   DOI   ScienceOn
37 K. Lee, K. Paek, W. Ju, and Y. Lee, Journal of Microbiology, 44, 3, 269 (2006).
38 G. Kamgang-Youbi, J. M. Herry, T. Meylheuc, J. L. Brisset, M. N. Bellon-Fontaine, A. Doubla, and M. Naitali, Lett. Appl. Microbiol. 48, 13 (2009).   DOI   ScienceOn
39 H. Son and W. K. Lee, Appl. Chem. Eng. 22, 261 (2011).
40 N. S. J. Braithwaite, Plasma Sources Sci. Technol. 9, 517 (2000).   DOI   ScienceOn