• Title/Summary/Keyword: inhibition of DNA damage

Search Result 174, Processing Time 0.039 seconds

Antioxidative, Anti-inflammatory, and DNA Damage Protective Effect in Cortex Extracts of Eucommia ulmoides by Roasting (추출방법에 따른 두충 껍질 추출물의 항산화, 항염증 활성 비교)

  • Lee, Young Min;Kim, In Sook;Kim, Jae Gon;Park, Seo Hyun;Lim, Beong Ou
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.4
    • /
    • pp.259-270
    • /
    • 2019
  • Background: Eucommia ulmoides has long been used as an herbal medicine for the treatment of diabetes, hypertension and other diseases in many Asian countries. Methods and Results: This study aimed at evaluating the antioxidant and anti-inflammatory properties of its water (EU-DW, and REU-DW) and ethanol (EU-EtOH, and REU-EtOH) extracts, as well as those of non-roasted E. ulmoides (EU) and roasted EU (REU) cortex. The following were assessed in each extract: total phenolic and flavonoid contents, 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and nitrite radical scavenging activities, reducing power, DNA damage prevention activity, and nitric oxide (NO) inhibition activity. Both EU and REU extracts showed high phenolic and flavonoid content, dose-dependent DPPH radical scavenging capacity, high reducing activity, and considerable DNA damage prevention activity. EU extracts showed remarkable ABTS free radicals scavenging capacity. REU extracts showed a higher radical scavenging capacity and played an important role in inhibiting NO production. Conclusions: The results of this study suggested that aqueous and ethanol extracts of EU and REU possess antioxidant capacities, and prevent oxidative damage to DNA, probably owing to their phenolic and flavonoid content. Therefore, EU and REU could be candidates antioxidant supplements.

The Antioxidant Effect of Lactobacillus gasseri KACC 91155 Isolated from Korean Infant in Jurkat T Cells (유아의 분변에서 분리한 Lactobacillus gasseri KACC 91155의 Jurkat T Cells에서 항산화 효과)

  • Jeong Seok-Geun;Kim Hyun-Soo;Ham Jun-Sang;Chae Hyun-Seok;Lee Jong-Moon;Ahn Chong-Nam
    • Food Science of Animal Resources
    • /
    • v.25 no.4
    • /
    • pp.494-499
    • /
    • 2005
  • In the present study, we investigate the protective effect of antioxidant strain Lactobacillus gasseri KACC 91155, isolated from Korean infant feces(Obstetrics & Gynecology, Suwon, Korea) on the oxidative stress damage on the Jurkat T cells. To estimate the extent of cellular lipid peroxidation inhibition, MDA(malondialdehyde) production was measured Furthermore, cell viability was detected by the MTT assay, DNA damage was tested by the comet assay. Cell grown in medium with or without L gasseri lysate$(100\~1,000{\mu}g)$ were treated with $H_2O_2,\;Fe^{2+}$ as an oxidative stimulus. From the result obtained, the supplementation of Jurkat T cells with L. gasseri lysate significantly decreased in MDA production (1,250 vs. 835 nmol/mg protein), and DNA damage(31.6 vs. 22.6 tail moment). Also L gasseri increase cell viability against oxidative damage. We concluded that the L. gasseri KACC 91155 showed a protective effect against oxidative stress.

Carbohydrase inhibition and anti-cancerous and free radical scavenging properties along with DNA and protein protection ability of methanolic root extracts of Rumex crispus

  • Shiwani, Supriya;Singh, Naresh Kumar;Wang, Myeong Hyeon
    • Nutrition Research and Practice
    • /
    • v.6 no.5
    • /
    • pp.389-395
    • /
    • 2012
  • The study elucidated carbohydrase inhibition, anti-cancerous, free radical scavenging properties and also investigated the DNA and protein protection abilities of methanolic root extract of Rumex crispus (RERC). For this purpose, pulverized roots of Rumex crispus was extracted in methanol (80% and absolute conc.) for 3 hrs for $60^{\circ}C$ and filtered and evaporated with vacuum rotary evaporator. RERC showed high phenolic content ($211{\mu}g$/GAE equivalent) and strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ($IC_{50}$ = 42.86 (absolute methanol) and $36.91{\mu}g/mL$ (80% methanolic extract)) and reduced power ability. Furthermore, RERC exhibited significant protective ability in $H_2O_2/Fe^{3+}$/ascorbic acid-induced protein or DNA damage and percentage inhibition of the HT-29 cell growth rate following 80% methanolic RERC exposure at $400{\mu}g/mL$ was observed to be highest ($10.2%{\pm}1.03$). Moreover, methanolic RERC inhibited ${\alpha}$-glucosidase and amylase effectively and significantly (P < 0.05). Conclusively, RERC could be considered as potent carbohydrase inhibitor, anti-cancerous and anti-oxidant.

Effect of Interaction between Protocatechualdehyde Produced from Streptomyces lincolnensis M-20 and Copper Ions on Antioxidant and Pro-oxidant Activities (Streptomyces lincolnensis M-20 균주에서 생산된 Protocatechualdehyde와 구리 이온의 상호 작용이 항 산화 및 산화 촉진 활성에 미치는 영향)

  • Kim, Kyoung-Ja;Lee, Jae-Hun;Yang, Yong-Joon
    • Korean Journal of Microbiology
    • /
    • v.50 no.1
    • /
    • pp.22-26
    • /
    • 2014
  • Protocatechualdehyde (PA) is phenolic compound having antioxidative and antitumor activities. PA was purified from supernatant of Streptomyces lincolnensis M-20. In the presence of copper ion, PA acted as pro-oxidant. The antioxidant activity was assessed with the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, and the pro-oxidant effect of PA on DNA damage as pBR322 plasmid DNA-cleaving agents in the presence of Cu(II) ions was investigated. The involvement of reactive oxygen species (ROS) in the DNA damage was confirmed by the inhibition of the DNA breakage by using glutathione (GSH), specific scavenger of ROS. When the increase in ROS reaches a certain level (the toxic threshold), it may trigger cell death. The formation of the PA/Cu(II) chelate complex was confirmed by reaction with ethylenediamine-tetraacetic acid (EDTA), a well-known chelating agent for metal ions, by using UV/Vis spectroscopic analysis.

Ultraviolet B (UVB) Induces Down-regulation of Parkin Gene Expression

  • Kim, Sung Hoon;Kang, Yeo Wool;Lee, Juyeon;Kim, Hyun-Kyung;Jung, Byung Chul;Kim, Bohee;Kim, Dai Joong;Kim, Yoon Suk
    • Biomedical Science Letters
    • /
    • v.22 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • Ultraviolet (UV) irradiation induces cellular damage. A variety of cellular responses for repairing cellular damage including DNA damage occur after UV irradiation. During the repair processes, expression and activation of various molecules are regulated depending on the types of cellular damage. Parkin is an E3 ligase and act as a tumor suppressor. Recently, it has been reported that Parkin is involved in the DNA repair process. In the current study, we investigated whether UVB irradiation influences expression of Parkin. Parkin expression transiently decreased after UVB irradiation both at the mRNA and protein levels, but returned to normal levels thereafter. Taken together with cell viability data, Parkin expression is down-regulated during UVB-induced suppression of cell growth and is increased again in accordance with recovery of UVB-induced cell growth inhibition. However, Parkin overexpression or knockdown did not influence UVB-induced cell growth inhibition and recovery. We propose that Parkin could be a useful molecular marker for evaluating conditions of cells after UVB irradiation.

Antigenotoxicity and Action Mechanism of Quercetin and its Glycosides against Oxidative DNA Damage (Oxidative DNA 손상에 대한 Quercetin 및 그 배당체들의 유전독성억제효과와 작용기전)

  • 김수희;허문영
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.2
    • /
    • pp.116-121
    • /
    • 1999
  • Quercetin and its glycosides showed a strong free radical scavenging effect to DPPH radical generation. However, there were not big differences between quercetin aglycone and glycosides under experimental condition of this study. On the other hand, quercetin had pro-oxidant effect in bleomycin-dependent DNA assay. Quercetin aglycone and its glycosides, quercitrin inhibited $H_2$$O_2$- induced DNA damage in CHL cells. They also have an anticlastogenicity toward DNA breakage agent by radical generation like bleomycin. These results indicate that quercetin aglycone and its glycosides are capable of protecting the free radical generation induced by reactive oxygen species like $H_2$$O_2$. The mechanism of inhibition in hydrogen peroxide-induced genotoxicity may be due to their free radical scavenging properties. Therefore, quercetin aglycone and its glycosides may be useful chemopreventive agents by protecting of free radical generation which are involved in carcinogenesis and aging. However, quercetin and its glycosides must also carefully examined for pro-oxidant properties before being proposed for use in vivo.

  • PDF

Protective Effect of Green Tea Extracts on Oxidative Stress (녹차추출물의 산화적 스트레스에 대한 억제효과)

  • Kim, Nam-Yee;Lee, Jin-Ha;Heo, Moon-Yaung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.6
    • /
    • pp.322-328
    • /
    • 2006
  • Green tea is of particular source as it has been found to have strong antioxidant activities. The extracts of green tea during the commercial harvest seasons from April, 2003 to August, 2003 were compared. The purpose of this study was to determine the correlation between the polyphenol content of green teas and its antioxidant activities. The con-tent of total polyphenols was analyzed and several antioxidant testings were performed. The levels of total polyphenols were higher in the green teas (e.g. Woojeon, Sejak) harvested during very early spring and lower in the green teas harvested late(eg. Ipha, Yepcha). In particular, the free radical scavenging, the inhibition of LDL oxidation, the cytoprotective effect and the inhibition of DNA damage were correlated with the total polyphenol contents of green tea extracts harvested early spring such as Woojeon, Sejak and Jungjak. The results obtained here show that all extracts of green teas including purified green tea catechin, GTC, have strong antioxidant activities on oxidative stress in vifrθ. The variation in polyphenol content and antioxidant activities among various types of green tea by the harvesting time may provide critical information for investigators and consumers using tea in purposes of nutrition and chemoprevention.

Antioxidative activity of peony root

  • Lee, Seung-Chul;Kwon, Yong-Soo;Kim, Hyun-Pyo;Heo, Moon-Young
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.61-61
    • /
    • 2003
  • The ethanol extract of peony root (Paeonia Lactiflora Pall, Paeoniaceae) and its major active components including gallic acid and methyl gallate were evaluated for their protective effects against free radical generation and lipid peroxidation. And protective effects against hydrogen peroxide-induced oxidative DNA damage in a mammalian cell line were performed. The ethanol extract of peony root (PRE), gallic acid and methyl gallate were shown to possess the significant free radical scavenging effect against 1,1-diphenyl-2-picryl hydrazine (DPPH) radical generation and were revealed the inhibitory effect of lipid peroxidation as expressed by malondialdehyde (MDA) formation. They were also found to strongly inhibit hydrogen peroxide-induced DNA damage from NIH/3T3 fibroblasts, assessed by single cell gel electrophoresis. Furthermore, oral administration of 50% PRE (50% ethanol extract), gallic acid and methyl gallate potently inhibited micronucleated reticulocyte (MNRET) formation of mouse peripheral blood induced by KBrO3 treatment in vivo. Therefore, PRE containing gallic acid and methyl gallate may be a useful natural antioxidant by scavenging free radicals, inhibition of lipid peroxidation and protecting oxidative DNA damage.

  • PDF

Antioxidative Activity of the Extract from the Inner Shell of Chestnut

  • SON Kyung Hun;YANG He Eun;LEE Seung Chul;CHUNG Ji Hun;JO Byoung Kee;KIM Hyun Pyo;HEO Moon Young
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.150-155
    • /
    • 2005
  • The ethanolic extract of chestnut (Castanea crenata S. et Z., Fagaceae) inner shell (CISE) and one of its components, ellagic acid (EA), were evaluated for their protective effects against 1, 1-diphenyl-2-picryl hydrazine (DPPH) free radical generation and hydrogen peroxide-induced oxidative DNA damage in a mammalian cell line. CISE and EA were shown to possess the free radical scavenging effect against DPPH radical generation, significantly. They were also found to strongly inhibit hydrogen peroxide-induced DNA damage from Chinese hamster lung (CHL) cell, assessed by single cell gel electrophoresis assay and 8-hydroxy -2'-deoxy guanosine (8-OH-2'dG) assay. Furthermore, topical application of CISE [$12.5\%$(w/w) cream] and ellagic acid [$1.0\%$(w/w) cream] for 14 days potently inhibited malondialdehyde (MDA) formation of mouse dorsal skin (a marker of lipid peroxidation) induced by ultraviolet B exposure. Therefore, CISE and its component, ellagic acid, may be the useful natural antioxidants by scavenging free radicals, inhibition of lipid peroxidation and protecting oxidative DNA damage when topically applied.