Browse > Article

Antioxidative Activity of the Extract from the Inner Shell of Chestnut  

SON Kyung Hun (Korea Food and Drug Administration)
YANG He Eun (College of Pharmacy, Kangwon National University)
LEE Seung Chul (College of Pharmacy, Kangwon National University)
CHUNG Ji Hun (R & D Center, Coreana Cosmetic Co., LTD)
JO Byoung Kee (R & D Center, Coreana Cosmetic Co., LTD)
KIM Hyun Pyo (College of Pharmacy, Kangwon National University)
HEO Moon Young (College of Pharmacy, Kangwon National University)
Publication Information
Biomolecules & Therapeutics / v.13, no.3, 2005 , pp. 150-155 More about this Journal
Abstract
The ethanolic extract of chestnut (Castanea crenata S. et Z., Fagaceae) inner shell (CISE) and one of its components, ellagic acid (EA), were evaluated for their protective effects against 1, 1-diphenyl-2-picryl hydrazine (DPPH) free radical generation and hydrogen peroxide-induced oxidative DNA damage in a mammalian cell line. CISE and EA were shown to possess the free radical scavenging effect against DPPH radical generation, significantly. They were also found to strongly inhibit hydrogen peroxide-induced DNA damage from Chinese hamster lung (CHL) cell, assessed by single cell gel electrophoresis assay and 8-hydroxy -2'-deoxy guanosine (8-OH-2'dG) assay. Furthermore, topical application of CISE [$12.5\%$(w/w) cream] and ellagic acid [$1.0\%$(w/w) cream] for 14 days potently inhibited malondialdehyde (MDA) formation of mouse dorsal skin (a marker of lipid peroxidation) induced by ultraviolet B exposure. Therefore, CISE and its component, ellagic acid, may be the useful natural antioxidants by scavenging free radicals, inhibition of lipid peroxidation and protecting oxidative DNA damage when topically applied.
Keywords
Castanea crenata; ellagic acid; oxidative stress; antioxidant; free radical scavenging; single cell gel electrophoresis; 8-hydroxy-2'-guanosine(8-OH-2'dG); ultraviolet B;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ahn, R. M., Lim, S. J., Ann, H. S., Kim, M. G. and Yang, M. J. (1999). Inhibitory effects of water-acetone extracts of chestnut inner shell, pine needle and hop on the melanin biosynthesis. Yakhak Hoeji 43, 494-501
2 Beckman, K. B. and Ames, B. N. (1998). The free radical theory of aging matures. Physiol. Rev. 78, 547-581   DOI
3 Black, H. S. (1987). Potential involvement of free radical reactions in ultraviolet light-mediated cutaneous damage. Photochem. Photobiol. 46, 213-221   DOI   ScienceOn
4 Cao, G., Sofic, E. and Prior, R. L. (1997). Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic. Biol. Med. 22, 749-760 (1997)   DOI   ScienceOn
5 Dizdaroglu, M. (1992). Oxidative damage to DNA in mammalian chromatin. Mutat. Res. 275, 331-342   DOI   ScienceOn
6 Dragsted, L. O. (2003). Antioxidant actions of polyphenols in humans. Int. J. Vitam. Nutr. Res. 73, 112-119   DOI   ScienceOn
7 Feig, D. I., Reid, T. M. and Loeb, L. A. (1994). Reactive oxygen species in tumorigenesis. Cancer Res. 54, 1890-1894
8 Festa, F., Aglitti, T., Duranti, G., Ricordy, R., Perricone, P. and Cozzi, R.. (2001). Strong antioxidant activity ofellagic acid in mammalian cells in vitro revealed by the comet assay. Anticancer Res. 21, 3903-3908
9 Formica, J. V. and Regelson, W. (1995). Review ofthe biology of Quercetin and related bioflavonoids. Food Chem. Toxicol. 33, 1061-1080   DOI   ScienceOn
10 Fugita, Y., Uera, I., Morimoto, Y., Nakajima, M., Hatano, C. and Okuda, T. (1988). Studies on inhibition mechanism of autooxidation by tannins and flavonoids, II. Inhibition mechanism of coffee tannin isolated from leaves of Artemisia species on lipoxygenase dependent lipid peroxidation. Yakugaku Zasshi 108, 129-135   DOI
11 Guyton, K. G. and Kensler, T. W. (1993). Oxidative mechanisms in carcinogenesis. Br. Med. Bull. 49, 523-544   DOI
12 Huh, Z. (1966). Dong-Eu-Bo-Gam, Translated Ed., Namsandang, Seoul, Korea, pp.1160
13 Ohkawa, H., Ohishi, N. and Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 5, 351-358
14 Kasai, H. (1997). Analysis of a form of oxidative DNA damage, 8-hydroxy-2'-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat. Res. 387, 147-163   DOI   ScienceOn
15 Khanduja, K. L., Gandhi, R. K., Pathania, V. and Syal, N. (1999). Prevention of N-nitrosodiethylamine- induced lung tumorigenesis by ellagic acid and quercetin in mice. Food Chem. Toxicol. 37, 313-318   DOI   ScienceOn
16 Nepka, C., Asprodini, E. and Kouretas, D. (1999). Tannins, xenobiotic metabolism and cancer chemoprevention in experimental animals. Eur. J. Drug Metab. Pharmacokinet. 24, 183-189   DOI
17 Olive, P. L., Banath, R. E. and Durand, R. E. (1990). Heterogenecity in radiation-induced DNA damage and repair in tumor and normal cells measured using the comet assay. Radiat. Res. 122, 86-94   DOI   ScienceOn
18 Priyadarsini, K. I., Khopde, S. M., Kumar, S. S. and Mohan, H. (2002). Free radical studies of ellagic acid, a natural phenolic antioxidant. J. Agric. Food Chem. 27;50, 2200-2206
19 Pryor, W. A. and Tang, R. H. (1978). Ethylene formation from methanol. Biochemical and Biophysical Research Communications 81, 498-503   DOI   ScienceOn
20 Rojas, E., Lopez, M. C., and Valverde, M. (1999). Single cell gel electrophoresis assay: methodology and application. J. Chromatography B. 722, 225-254   DOI   ScienceOn
21 Chi, Y. S., Heo, M. Y., Chung, J. H., Jo, B.K. and Kim, H. P. (2002). Effects of the chestnut inner shell extract on the expression of adhesion molecules, fibronectin and vitronectin, of skin fibroblast in culture. Arch. Pharm. Res. 25, 469-476   DOI   ScienceOn
22 Shigenaga, M. K., Park, J. W., Cundy, K. C., Gimeno, C. J. and Ames, B. N. (1990). In vivo oxidative DNA damage: Measurement of 8-hydroxy-2'-deoxyguanosine in DNA and urine by high-performance liquid chromatography with electrochemical detection. Meth. Enzymol. 186, 521-530   DOI
23 Sing, N. P., McCoy, M. T., Tice, R. R. and Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184-191   DOI   ScienceOn
24 Thiem, B. and Berge, V. (2003). Cloudberry: an important source of ellagic acid, an anti-oxidant. Tidsskr Nor Laegeforen. 123, 1856-1857
25 Cozzi, R., Ricordy, R., Bortolini, F., Ramdori, P., Perticone, P. and Salvia, R. (1995). Taurin and ellagic acid: Two differentlyacting natural antioxidants. Env. Mol. Mutagen 26, 248-254   DOI   ScienceOn
26 Masuda, T., Yonemori, S., Oyama, Y., Takeda, Y., Tanaka, T., Andoh, T., Shinohara, A. and Nakata, M. (1999). Evaluation of the antioxidant activity of environmental plants: activity of the leaf extracts from seashore plants. J. Agric. Food Chem. 47, 1749-1754   DOI   ScienceOn
27 Kasai, H., Nishimura, S., Kurokawa, Y. and Hayashi, Y. (1987). Oral administration of the renal carcinogen, potassium bromate, specifically produces 8-hydroxy-2'-deoxyguanosine in rat target organ DNA. Carcinogenesis 8, 1959-1961   DOI   ScienceOn
28 Sai-Kato, K., Umemura, T., Takagi, A., Hasegawa, R., Tanimura, A. and Kurokawa, Y. (1995). Pentachlorophenol-induced oxidative DNA damage in mouse liver and protective effect of antioxidants. Food Chem. Toxicol. 33, 877-882   DOI   ScienceOn
29 Naczk, M., Wanasundara, P. K. and Shahadi, F. (1992). Facile spectrophotometric quantification method of sinapic acid in hexane-extracted and methanol-ammonia-water-treated mustard and rapeseed meas. J. Agric. Food Chem. 40, 445-448
30 Su, J. D., Osawa, T., Kawakishi, S. and Namiki, M. (1988). Tannin antixoidants from Osbeckia chinensis. Phytochemistry 27, 1315-1319   DOI   ScienceOn
31 Wei, H., Zhang, X., Wang, Y. and Lebwohl, M. (2002). Inhibition of ultraviolet light-induced oxidative events in the skin and internal organs of hairless mice by isoflavone genistein. Cancer Lett. 185, 21-29   DOI   ScienceOn