DOI QR코드

DOI QR Code

Effect of Interaction between Protocatechualdehyde Produced from Streptomyces lincolnensis M-20 and Copper Ions on Antioxidant and Pro-oxidant Activities

Streptomyces lincolnensis M-20 균주에서 생산된 Protocatechualdehyde와 구리 이온의 상호 작용이 항 산화 및 산화 촉진 활성에 미치는 영향

  • Kim, Kyoung-Ja (Department of life science and Biotechnology, College of Natural Science, Soonchunhyang University) ;
  • Lee, Jae-Hun (Department of life science and Biotechnology, College of Natural Science, Soonchunhyang University) ;
  • Yang, Yong-Joon (Department of Plant Science and Technology, Sangmyung University)
  • 김경자 (순천향대학교 생명공학과) ;
  • 이재훈 (순천향대학교 생명공학과) ;
  • 양용준 (상명대학교 식물식품공학과)
  • Received : 2014.02.11
  • Accepted : 2014.03.18
  • Published : 2014.03.31

Abstract

Protocatechualdehyde (PA) is phenolic compound having antioxidative and antitumor activities. PA was purified from supernatant of Streptomyces lincolnensis M-20. In the presence of copper ion, PA acted as pro-oxidant. The antioxidant activity was assessed with the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, and the pro-oxidant effect of PA on DNA damage as pBR322 plasmid DNA-cleaving agents in the presence of Cu(II) ions was investigated. The involvement of reactive oxygen species (ROS) in the DNA damage was confirmed by the inhibition of the DNA breakage by using glutathione (GSH), specific scavenger of ROS. When the increase in ROS reaches a certain level (the toxic threshold), it may trigger cell death. The formation of the PA/Cu(II) chelate complex was confirmed by reaction with ethylenediamine-tetraacetic acid (EDTA), a well-known chelating agent for metal ions, by using UV/Vis spectroscopic analysis.

Protocatechualdehyde (PA)는 항산화 활성과 항암 활성을 가진 페놀성 물질이다. Streptomyces lincolnensis M-20 균주에서 생산된 PA를 균주 상등액에서 분리, 정제하였다. 항산화 활성을 가진 PA가 구리 이온 존재 하에서는 산화촉진제로 작용하였다. 항산화 활성은 DPPH를 이용한 방법으로 측정하였으며, 구리 이온 존재 하에서 PA의 산화 촉진 작용은 pBR322 플라스미드의 DNA 절단 작용으로 측정하였다. DNA 손상으로 생성되는 활성산소 종의 확인은 활성 산소종의 포집자인 글루타치온에 의해 DNA 절단이 억제되는 것으로 확인하였다. PA와 구리 이온의 복합체 형성은 금속 이온의 킬레이트인 EDTA가 존재할 경우와 존재하지 않을 경우를 자외선/가시광선 분광학적 분석법으로 비교, 확인하였다.

Keywords

References

  1. Ahmad, A., Syed, F.A., Singh, S., and Hadi, S.M. 2005. Prooxidant activity of resveratrol in the presence of copper ions: mutagenicity in plasmid DNA. Toxicol. Lett. 159, 1-12. https://doi.org/10.1016/j.toxlet.2005.04.001
  2. Ahsan, H. and Hadi, S.M. 1998. Strand scission in DNA induced by curcumin in the presence of Cu(II). Cancer Lett. 124, 23-30. https://doi.org/10.1016/S0304-3835(97)00442-4
  3. Antosiewicz, J., Ziolkowski, W., Kar, S., Powolny, A.A., and Singh, S.V. 2008. Role of reactive oxygen intermediates in cellular responses to dietary cancer chemopreventive agents. Planta Med. 74, 1570-1579. https://doi.org/10.1055/s-2008-1081307
  4. Cao, G., Sofic, E., and Prior, R.L. 1997. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic. Biol. Med. 22, 749-760. https://doi.org/10.1016/S0891-5849(96)00351-6
  5. Cooke, M.S., Evans, M.D., Dizdaroglu, M., and Lunec, J. 2003. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 17, 1195-1214. https://doi.org/10.1096/fj.02-0752rev
  6. Fan, G.J., Jin, X.L., Qian, P., Wang, Q., Yang, R.T., Dai, F., Tang, J.J., Shang, Y.J., Cheng, L.X., Yang, J., and et al. 2009. Hydroxycinnamic acids as DNA-cleaving agents in the presence of Cu (II) ions: mechanism, structure-activity relationship, and biological implications. Chemistry 15, 12889-12899. https://doi.org/10.1002/chem.200901627
  7. Hail, N., Cortes, M.Jr., Drake, E.N., and Spallholz, J.E. 2008. Cancer chemoprevention: A radical perspective. Free Radical Biol. Med. 45, 97-110. https://doi.org/10.1016/j.freeradbiomed.2008.04.004
  8. Jung, Y. and Surh, Y. 2001. Oxidative DNA damage and cytotoxicity induced by copper stimulated redox cycling of salsolinol, a neurotoxic tetrahydroisoquinoline alkaloid. Free Radic. Biol. Med. 30, 1407-1417. https://doi.org/10.1016/S0891-5849(01)00548-2
  9. Kim, K.J., Kim, M.A., and Jung, J.H. 2008. Antitumor and antioxidant activity of protocatechualdehyde produced from Streptomyces lincolnensis M-20. Arch. Pharm. Res. 31, 1572-1577. https://doi.org/10.1007/s12272-001-2153-7
  10. Kim, K.J., Yang, Y.J., and. Kim, J.K. 2003. Purification and characterization of chitinase from Streptomyces sp. M-20. J. Biochem. Mol. Biol. 36, 185-189. https://doi.org/10.5483/BMBRep.2003.36.2.185
  11. Kovaeik, J. and Baekor, M. 2007. Phenylalanineammonia-lyase and phenolic compounds in chamomile tolerance to cadmium and copperexcess. Water Air Soil Pollut. 185, 185-193. https://doi.org/10.1007/s11270-007-9441-x
  12. Maksymiec, W. and Krupa, Z. 2006. The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ. Exp. Bot. 57, 187-194. https://doi.org/10.1016/j.envexpbot.2005.05.006
  13. Perron, N.R. and Brumaghim, J.L. 2009. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 53, 75-100. https://doi.org/10.1007/s12013-009-9043-x
  14. PerwezHussain, S., Hofseth, L.J., and Harris, C.C. 2003. Radical causes of cancer. Nat. Rev. Cancer 3, 276-285. https://doi.org/10.1038/nrc1046
  15. Posmyk, M.M., Kontek, R., and Janas, K.M. 2009. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper ions. Ecotoxicol. Environ. Saf. 72, 596-602. https://doi.org/10.1016/j.ecoenv.2008.04.024
  16. Sugihara, N., Arakawa, T., Ohnishi, M., and Furuno, K. 1999. Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with alpha-linolenic acid. Free Radic. Biol. Med. 27, 1313-1323. https://doi.org/10.1016/S0891-5849(99)00167-7
  17. Wang, T., Chen, L.X., Long, Y., Wu, W.M., and Wang, R. 2008. DNA damage induced by caffeic acid phenyl ester in the presence of Cu(II) ions: potential mechanism of its anticancer properties. Cancer Lett. 263, 77-88. https://doi.org/10.1016/j.canlet.2007.12.021
  18. Yamashita, N., Tanemura, H., and Kawanishi, S. 1999. Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu(II). Mutat. Res. 425, 107-115. https://doi.org/10.1016/S0027-5107(99)00029-9
  19. Zheng, L.F., Dai, F., Hou, B., Yang, L., and Liu, Z.L. 2008. Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of Cu(II) ions: mechanism and structure-activity relationship. Food Chem. Toxicol. 46, 149-156. https://doi.org/10.1016/j.fct.2007.07.010
  20. Zheng, L.F., Wei, Q.Y., Cai, Y.J., Fang, J.G., Zhou, B., Yang, L., and Liu, Z.L. 2006. DNA damage induced by resveratrol and its synthetic analogues in the presence of Cu(II) ions: mechanism and structure-activity relationship. Free Radic. Biol. Med. 41, 1807-1816. https://doi.org/10.1016/j.freeradbiomed.2006.09.007

Cited by

  1. Streptomyces -Derived Metabolites with Potential Photoprotective Properties—A Systematic Literature Review and Meta-Analysis on the Reported Chemodiversity vol.25, pp.14, 2020, https://doi.org/10.3390/molecules25143221