• Title/Summary/Keyword: inhibition activities

Search Result 3,229, Processing Time 0.037 seconds

Biological activity and analysis of α-glucosidase inhibitor from mulberry (Morus alba L.) wine (오디와인의 생리활성 및 α-glucosidase 저해제의 분석)

  • Son, Woo-Rim;Choi, Sang-Won
    • Food Science and Preservation
    • /
    • v.20 no.6
    • /
    • pp.877-885
    • /
    • 2013
  • Wine extracts of four different berry fruits, such as mulberry, blueberry, strawberry, and raspberry, were investigated for antioxidant, anti-tyrosinase, and ${\alpha}$-glucosidase activities by using in vitro assays. Additionally, quantitative changes of ${\alpha}$-glucosidase inhibitor in mulberry wine were determined by HPLC according to mulberry cultivars and fermentation process. Among four berry wines examined, mulberry wine showed the most potent ${\alpha}$-glucosidase inhibitory activity with 69.37% at 0.23 mg/mL, while blueberry and strawberry wines exhibited the strongest inhibition against DPPH radical and tyrosinase activity, respectively. Four compounds were isolated and purified from mulberry wine by a series of isolation procedures, such as solvent fractionation, and Diaion HP-20, ODS-A, and Sephadex LH-20 column chromatographies. Among them, Comp. 4 exerted the strongest ${\alpha}$-glucosidase inhibitory activity ($I_C_{50}=31.57{\mu}M$), and its chemical structure was identified as quercetin by UV and NMR spectral analysis. Finally, the "Daeseongppong" (16.83 ppm) muberry wine had larger amount of quercetin than the "Iksuppong" (14.85 ppm) and "Cheongilppong" (8.92 ppm) mulberry wines, but their contents of three mulberry wines decreased considerably with aging process. These results suggest that mulberry wine containing quercetin acted as ${\alpha}$-glucosidase inhibitor may be useful as a potential functional wine for improving diabetic disorder.

Inhibitory Effects of Various Mulberry Fruits (Morus alba L.) on Related Enzymes to Adult Disease (품종이 다른 오디(Morus alba L.)의 성인병 관련 효소 억제효과)

  • Chae, Jung-Woo;Park, Hye-Jin;Kang, Sun-Ae;Cha, Won-Seup;Ahn, Dong-Hyun;Cho, Young-Je
    • Journal of Life Science
    • /
    • v.22 no.7
    • /
    • pp.920-927
    • /
    • 2012
  • The objective of this research was to develop the functional material of water and 60% ethanol extracts from nine kinds of mulberry fruits (Morus alba L.) that influence the inhibitory activity on angiotensin-converting enzyme, xanthine oxidase, ${\alpha}$-amylase, and ${\alpha}$-glucosidase. The total phenolic contents in the water extracts were over 2 mg/g in two species (Cheongilppong and Kangwon III) and five species (Daeyoupchosaeng, Cheongilppong, Kangwon III, Hihak, and Cataneo) of 60% ethanol extracts. The inhibitory activity against the angiotensin-converting enzyme was determined with them. Baekwoon III was $90.9{\pm}4.5%$ in the water extracts, and Hihak was $81.8{\pm}4.5%$ in the 60% ethanol extracts. The inhibitory activity of Kuksang 20 against xanthin oxidase was about 10% in the water extracts, and Cataneo was $21.4{\pm}2.3%$ in the 60% ethanol extracts. Six of the species (Daeyoupchosaeng, Suwonppong, Cheongilppong, Kangwon III, Hihak, and Kuksang 20) in the water extracts showed inhibitory activities against ${\alpha}$-amylase, as 100%, respectively. The inhibitory activity of ${\alpha}$-glucosidase was determined for these nine species. Four species (Baekwoon III, Daeyoupchosaeng, Cheongilppong, Kangwon III, Hihak, and Kuksang 20) in the water extracts and three species (Daechoukmyeun, Kangwon III, and Kuksang 20) in the 60% ethanol extracts showed inhibition of over 20%. The results revealed strong biological activity in spite of little total phenolic contents. These water and 60% ethanol extracts with high-quality biological activity from various mulberry fruits (Morus alba L.) are expected to represent good candidates for the development of antihypertentive and antidiabetes sources.

The Beneficial Effects of Extract of Pinus densiflora Needles on Skin Health (솔잎추출물의 피부건강 개선효과)

  • Choi, Jieun;Kim, Woong;Park, Jaeyoung;Cheong, Hyeonsook
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.208-217
    • /
    • 2016
  • Pinus densiflora Sieb. et Zucc. (P. densiflora) contains several phenolic compounds that exhibit biological activities, such as antimicrobial, antioxidant, and antihypertensive effects. However, the anti-inflammatory effect of P. densiflora on skin has rarely been reported. Malassezia furfur (M. furfur) is a commensal microbe that induces skin inflammation and is associated with several chronic disorders, such as dandruff, seborrheic dermatitis, papillomatosis, and sepsis. The aim of our study was to identify the anti-inflammatory effects of P. densiflora needle extracts on skin health subjected to M. furfur-induced inflammation. The methanolic extract of the pine needles was partitioned into n-hexane, EtOAc, n-BuOH, and water layers. We measured the anti-inflammatory effects (in macrophages) as well as the antioxidant, antifungal, and tyrosinase inhibitory activity of each of these layers. The antioxidant activity of the individual layers was in the order EtOAc layer > n-BuOH layer > water layer. Only the n-BuOH, EtOAc, and n-hexane layers showed antifungal activity. Additionally, all the layers possessed tyrosinase inhibition activity similar to that of ascorbic acid, which is used as a commercial control. The EtOAc layer was not cytotoxic toward the RAW 264.7 cell line. Interleukin 1 beta and tumor necrosis factor (TNF)-α expression levels in M. furfur-stimulated RAW 264.7 cells treated with the EtOAc layer were decreased markedly compared to those in cells treated with the other layers. Taken together, we believe that the needle extracts of P. densiflora have potential application as alternative anti-inflammatory agents or cosmetic material for skin health improvement.

Inhibitory Effects of Four Solvent Fractions of Alnus firma on α-Amylase and α-Glucosidase. (사방오리나무 추출물의 α-amylase 및 α-glucosidase 저해활성)

  • Choi, Hye-Jung;Jeong, Yong-Kee;Kang, Dae-Ook;Joo, Woo-Hong
    • Journal of Life Science
    • /
    • v.18 no.7
    • /
    • pp.1005-1010
    • /
    • 2008
  • In this study, we investigated the inhibitory effect of four solvent fractions of Alnus firma on ${\alpha}-amylase$, ${\alpha}-glucosidase$ and aldose reductase activities. The inhibitory test showed that methanol (MeOH) extract and hexane (HX) fraction strongly inhibited pork pancreatin and salivary ${\alpha}-amylase$ activity. The MeOH extract and HX fraction of Alnus firma at the concentration of 4 mg/ml inhibited more than 70% of pancreatin and salivary ${\alpha}-amylase$ activity. The inhibitory effect of fractions has different specificities against ${\alpha}-amylase$ from pancreatin and salivary. In addition, the MeOH extract and butanol (BuOH) fraction showed the highest inhibitory activity on yeast ${\alpha}-glucosidase$ at values of $IC_{50}$ $137.36\;{\mu}g/ml$ and $115.14\;{\mu}g/ml$ respectively. The MeOH extract and BuOH fraction showed the highest inhibitory activity on yeast ${\alpha}-glucosidase$ than commercial agent such as 1-deoxynorjirimycin and acarbose. Inhibition kinetics of solvent fractions showed that ${\alpha}-glucosidase$ has been inhibited noncompetitively by the MeOH, EA and BuOH fraction. The aldose reductase from human muscle cell had been inhibited strongly by the MeOH extract and EA fraction at 57.996% and 83.293% at the concentration of $50\;{\mu}g/ml$, respectively. These findings may contribute to biological significance in that ${\alpha}-amylase$, ${\alpha}-glucosidase$ and aldose reductase inhibitory compounds could be used as a functional food and a drug for the symptomatic treatment of antidiabetic disease in the future.

Variability in Drug Interaction According to Genetic Polymorphisms in Drug Metabolizing Enzymes

  • Jang, In-Jin;Yu, Kyung-Sang;Cho, Joo-Youn;Chung, Jae-Yong;Kim, Jung-Ryul;Lim, Hyeong-Seok;Shin, Sang-Goo
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.1
    • /
    • pp.15-18
    • /
    • 2004
  • There are significant differences in the extent of drug interactions between subjects. The influence of the genetic make up of drug metabolizing enzyme activities (CYP3A5, CYP2C19 and UDP-glucuronosyl transferase) on the pharmacokinetic drug interaction potential were studied in vivo. Nineteen healthy volunteers were grouped with regard to the $CYP3A5^{*}3$ allele, into homozygous wild-type (CYP3A5^{*}1/1^{*}1$, n=6), heterozygous $(CYP3A5^{*}1/^{*}3$, n=6), and homozygous variant-type $(CYP3A5^{*}3/^{*}3$, n=7) subject groups. The pharmacokinetic profile of intravenous midazolam was characterized before and after itraconazole administration (200 mg once daily for 4 days), and also following rifampin pretreatment (600 mg once daily for 10 days), with a washout period of 2 weeks in between. For omeprazole and moclobemide pharmacokinetic interaction study 16 healthy volunteers were recruited. The volunteer group comprised 8 extensive metabolizers and 8 poor metabolizers of CYP2C19, which was confirmed by genotyping. Subjects were randomly allocated into two sequence groups, and a single-blind, placebo-controlled, two-period crossover study was performed. In study I, a placebo was orally administered for 7 days. On the eighth morning, 300 mg of moclobemide and 40 mg of placebo were coadministered with 200 mL of water, and a pharmacokinetic study was performed. During study n, 40 mg of omeprazole was given each morning instead of placebo, and pharmacokinetic studies were performed on the first and eighth day with 300 mg of moclobemide coadministration. In the UGT study pharmacokinetics and dynamics of 2 mg intravenous lorazepam were evaluated before and after rifampin pretreatment (600 mg once daily for 10 days), with a washout period of 2 weeks in between. The subjective and objective pharmacodynamic tests were done before and 1, 2, 4, 6, 8, and 12 hrs after lorazepam administration. The pharmacokinetic profiles of midazolam and of its hydroxy metabolites did not show differences between the genotype groups under basal and induced metabolic conditions. However, during the inhibited metabolic state, the $CYP3A5^{*}3/^{*}3$ group showed a greater decrease in systemic clearance than the $CYP3A5^{*}1/^{*}1$ group $(8.5\pm3.8$ L/h/70 kg vs. $13.5\pm2.7$ L/h/70 kg, P=0.027). The 1'-hydroxymidazolam to midazolam AUC ratio was also significantly lower in the $CYP3A5^{*}3/^{*}3$,/TEX> group $(0.58\pm0.35,$ vs. $1.09\pm0.37$ for the homozygous wild-type group, P=0.026). The inhibition of moclo-bemide metabolism was significant in extensive metabolizers even after a single dose of omeprazole. After daily administration of omeprazole for 1 week, the pharmacokinetic parameters of moclobemide and its metabolites in extensive metabolizers changed to values similar to those in poor metabolizers. In poor meta-bolizers, no remarkable changes in the pharmacokinetic parameters were observed. The area under the time-effect curves of visual analog scale(VAS), choice reaction time, and continuous line tracking test results of lorazepam was reduced by 20%, 7%, 23% respectively in induced state, and in spite of large interindividual variablity, significant statistical difference was shown in VAS(repeated measures ANOVA, p=0.0027).

  • PDF

The Antioxidative Activity of Glutathione-Enriched Extract from Saccharomyces cerevisiae FF-8 in In Vitro Model System (In Vitro 과산화지질에 미치는 glutathione 고함유 효모 Saccharomyces cerevisiae FF-8의 항산화효과)

  • Lee Chi-Hyeoung;Cha Jae-Young;Jun Bang-Sil;Lee Ho-Jun;Lee Young-Chun;Cho Yong-Lark;Cho Young-Su
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.819-825
    • /
    • 2005
  • The Antioxidative accvities of the cell free extracts containing high glutathione by Saccharomyces cerevisiae FF-8 were tested in vitro experimental models : DPPH method for radical scavenging activity, ferric TBA method and ferric thiocyanate method using linoleic acid and tissue microsome for lipid peroxidation inhibitions. The concentration of intercellular glutathione by cultivating S. cerevisiae FF-8 in the YM optimal medium obtained $204\mug/ml$, which was increased by 2.76-fold from $74\mug/ml$ in the YM basal medium. A comparition between the YM basal medium and the YM optimal medium on antioxidative substance produced by S. cerevisiae FF-8 was investigated. In DPPH ($\alpha, \alpha-diphenyl-\beta-picrylhydrazyl$) method, the electron donating activity of the glutathione produced by S. cerevisiae FF-8 cultured in the YM optimal medium was as high as that of BHT ($ 0.05\%w/v $). The antioxidative a.tivity was measured by inhibition against lipid peroxidation of rat tissues' microsomes. The results of anti-oxidant activity of the cell free extracts by S. rerevisiae FF-8 cultured in the YM optimal medium was shown in the following order . $ liver 60.98\% > kidney 56.43\% > heart 52.91\% > brain 52.13\% > testis 45.57\% > spleen 42.95\% $. In antioxidative activities determined by ferric thiocyanate method and TBA methods against lipid peroxidation, the lipid peroxidation in the control mixture increased more rapidly than the typical peroxidation curve of linoleic acid from one day. The antioxidative activity of the cell free extracts by cultivating S. cerevisine FF-8 in the YM optimal medium were higher than that of the YM basal medium. These data indicate that the cell free extracts containing a high intercellular glutathione of S. cerevisiae FF-8 cultured in YM optimal medium showed strong antioxidative capacities by DPPH radical scavenging activity and ferric thiocyanate and TBARS measurements.

Effect of FS11052, an Inhibitor of Exocytosis, on Neurite Extension in Rat Hippocampal Neurons and PC12 Cells (신경전달물질 방출 저해제 FS11052가 신경세포와 PC12 세포의 돌기신장에 미치는 영향)

  • Lee Yun-Sik;Kim Dong-Seob
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.315-322
    • /
    • 2006
  • FS11052, a novel microbial metabolite from Streptomyces spp. was identified as a small molecular substance and shown inhibition activities for the release of neurotransmitter from rat hippocampal neuron and PC12 cells. FS11052 is an inhibitor of tritiated norepinephrine ($[^3H]-NE$) release in high $K^+$ buffer solution containing ionomycin, indicating that FS11052 inhibits neurotransmitter release after the influx of $Ca^{2+}$ ions. When examined the effect of FS11052 on glucuronidase release from guinea pig neutrophils, FS11052 inhibited glucuronidase release: when treated with $5{\mu}g/ml$ of FS11052, which was not induced cellular cytotoxicity. The fact that the glucuronidase release in neutrophil and norepinephrine release in neuron was inhibited suggests the similarity in the locations and the mechanisms of FS11052 action targets. When treated with $5{\mu}g/ml$ of FS11052, $[^3H]-NE$ release and neurite extension for both rat hippocampal neurons and PC12 cells were prevented. These observations of FS11052 functioning as an inhibitor of neurotransmitter release suggest that FS11052 has an important role in synaptic transmission in neuron.

Antioxidant Activities of Prunus salicina Lind cv. Soldam (Plum) at Different Growth Stages (생육 시기에 따른 피자두(Prunus salicina Lindl. cv. Soldam)의 항산화 효과)

  • Yu Mi-Hee;Lee Syngook;Im Hyo Gwon;Kim Hyun Jeong;Lee In-Seon
    • Food Science and Preservation
    • /
    • v.11 no.3
    • /
    • pp.358-363
    • /
    • 2004
  • This study was performed to evaluate the antioxidant effect of Prunus salicina Lindl. cv. Soldam at different growth stages (sample 1-8). Previous studies shows that this fruits possess hematopoiesis effect, osteoporosis prevention, and antimutagenic effects. Prunus salicina Lindl. cv. soldam was picked in every 5 days from the 40th day before harvesting date for marketing in Gimcheon, Gyeongbuk. The fruits at different growth stages (sample 1-8) were extracted with 60$\%$ acetone and chlorophyll in the extracts was removed. In proximate compositions, the contents of moisture of sample 1, 5, 8 were 88.52, 87.01, 83.56$\%$ ; crude ash were 7.12, 3.35, 3.57$\%$ ; crude protein were 7.52, 5.55, 3.85$\%$ ; crude fat contents were 3.20, 0.99, 5.15$\%$, respectively. The contents of total polyphenols and condensed tannin in the acetone extracts from sample 1, 5, 8 were 10.67, 4.05, 2.57$\%$, and 8.36, 3.11, 1.88$\%$, respectively. The antioxidantive effect of acetone extracts from immature fruits showed strong scavenging effect on DPPH free radicals. The RC$_{50}$ values of the extracts from sample 1, 2 were 2.23, 9.70 $\mu$g/mL, respectively while those of butylated hydroxyanisole (BRA) was 5.25 $\mu$g/mL. The extracts from immature fruits showed over 85$\%$ inhibition on peroxidation of linoleic acid at 100 $\mu$g/mL as determined by both the ferric thiocyanate (FTC) and the thiobarbituric acid (TBA) method.

Physiological Activities of Liquors Prepared with Medicinal Plants (생약초 침출주의 생리활성 효과)

  • Hwang In-Sik;Kim Seon-Jae;Park In-Bae;Park Yun-Mi;Park Jeong-Wook;Song Hyun-Woo;Jo Kwang-Ho;Jung Soon-Teck
    • Food Science and Preservation
    • /
    • v.12 no.3
    • /
    • pp.282-286
    • /
    • 2005
  • This study was to investigate the content of total phenolic compounds, electron donating ability, nitrate-scavenging effect, and angiotensin converting enzyme(ACE) inhibition effect of medicinal plant liquors prepared from Cnidium officinale, Angelica gigas, Pueraria thunbergiana(root), Pueraria thunbergiana (flower), and Glycyrrhiza uralensis. Physicochemical characteristics of the medicinal plant liquors are as follows: pH $5.65{\sim}6.36$; reducing sugar, $0.13{\sim}0.45\%$. The highest value of total phenolic compounds was found in liquor prepared with Pueraria thunbergiana(root) as $23.9{\sim}54.3\;mg\%$. The electron donating ability of liquor prepared with Pueraria thunbergiana showed the highest value($67.4{\sim}85.3\%$) among the liquors, and its nitrite scavenging ability($24.56{\sim}78.3\%$) showed the highest value than those of other medicianal plant liquors. ACE inhibitory activity showed the highest value in liquor prepared with Cnidium officinale.

Effects of Rhizoma Coptidis on Cellular Activity and IL-6 Production of LPS-treated Periodontal Ligament Cells (황련이 Lipopolysaccharide를 처리한 치주인대세포의 세포활성 및 IL-6 생산에 미치는 영향)

  • Song, Ki-Bum;Kong, Young-Hwan;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.3
    • /
    • pp.641-654
    • /
    • 1996
  • In infectious disease, invasion of host tissue by bacteria or their products frequently induces a wide variety of inflammatory and immunopathologic reaction. Evidence indicates that cytokines are involved in the initiation and progression of chronic inflammatory diseases, such as periodontitis. Interleukin-6, which is a multifunctional cytokine, has important roles in acute and chronic inflammation and may also be implicated in bone resorption. Periodontal diseases are characterized by chronic inflammation of the periodontium with alveolar bone resoption. A principal driving force behind this response appears to lie in the immune system's response to bacteria. Many of the cell components which have been shown to function as virulence factors in gram-negative bacteria are associated with the bacterial surface. Of these, lipopolysaccharide has been characterized as one that mediates a number of biological activities which can lead to the destruction of host tissue. Non-steroidal antiinflammatory drug is used for reduce inflammation, and most of NSAIDs inhibit prostaglandine $E_2$ production, but it is shown that $PGE_2$ production is stimulated by IL-1 in recent study. So, the influence of other cytokines except $PGE_2$ on periodontium can not be avoided. Therefore, new antiinflammatory drug is needed. Rhizoma coptidis is used in oriental medicine for anti-inflammation and antiseptics. In this present study, we examined the IL-6 release in periodontal ligament cells treated with the lipopolysaccharide, and also the effect of rhizoma coptidis on cellular activity and IL-6 production of periodontal ligament cells. To evaluate the effect of rhizoma coptidis on cellular activity, the cells were seeded at a cell density of $1{\times}10^4$ cells/well in 24-well culture plates. After one day incubation, 1-6, 10-9 and 10-12 g/ml of rhizoma coptidis and 5, $10{\mu}g/ml$ of LPS were added to the each well and incubated for 1 and 2 days, respectively. Then, MTT assay were carried out. To evaluate the effect of rhizoma coptidis on IL-6 production, the cells were seeded at a cell density of $1.5{\times}10^4$ cells/well in 24-well culture plates. After one day incubation, 10-9 g/ml of rhizoma coptidis and 5, $10{\mu}g/ml$ of LPS were added to the each well and incubated for 3, 6, 12 and 24 hours. Then, amounts of IL-6 production is measured by IL-6 ELISA kit used. The results were as follows : 1. Rhizoma coptidisrbelow to ($10^{-6}g/ml$) significantly increaed cellular activity of periodontal ligament cells than control. 2. Rhizoma coptidist ($10^{-9}g/ml$) significantly increased cellular activity of LPS($5{\mu}g/ml$)-treated periodontal ligament cells than control. 3. LPS(5 and $10{\mu}g/ml$) significantly increased IL-6 production of periodontal ligament cells than control. 4. Rhizoma coptidis($10^{-9}g/ml$) decreased IL-6 production of LPS ($5{\mu}g/ml$)-treated periodontal.ligarnent cells than LPS only tested group. These findings suggest that stimulation of the IL-6 release of periodontal ligament cells by LPS may have a role in the progression of inflammation and alveolar bone resoption in periodontal disease, and that inhibition of the IL-6 release of cells and stimulation of cellular activity by rhizoma coptidis may help the periodontal regeneration.

  • PDF