Browse > Article
http://dx.doi.org/10.5352/JLS.2005.15.5.819

The Antioxidative Activity of Glutathione-Enriched Extract from Saccharomyces cerevisiae FF-8 in In Vitro Model System  

Lee Chi-Hyeoung (Dept. of Biotechnology, Dong-A University)
Cha Jae-Young (Dept. of Biotechnology, Dong-A University)
Jun Bang-Sil (Dept. of Biotechnology, Dong-A University)
Lee Ho-Jun (Korea Food Research Institute)
Lee Young-Chun (Dept. of Biotechnology, Dong-A University)
Cho Yong-Lark (Dept. of Biotechnology, Dong-A University)
Cho Young-Su (Dept. of Biotechnology, Dong-A University)
Publication Information
Journal of Life Science / v.15, no.5, 2005 , pp. 819-825 More about this Journal
Abstract
The Antioxidative accvities of the cell free extracts containing high glutathione by Saccharomyces cerevisiae FF-8 were tested in vitro experimental models : DPPH method for radical scavenging activity, ferric TBA method and ferric thiocyanate method using linoleic acid and tissue microsome for lipid peroxidation inhibitions. The concentration of intercellular glutathione by cultivating S. cerevisiae FF-8 in the YM optimal medium obtained $204\mug/ml$, which was increased by 2.76-fold from $74\mug/ml$ in the YM basal medium. A comparition between the YM basal medium and the YM optimal medium on antioxidative substance produced by S. cerevisiae FF-8 was investigated. In DPPH ($\alpha, \alpha-diphenyl-\beta-picrylhydrazyl$) method, the electron donating activity of the glutathione produced by S. cerevisiae FF-8 cultured in the YM optimal medium was as high as that of BHT ($ 0.05\%w/v $). The antioxidative a.tivity was measured by inhibition against lipid peroxidation of rat tissues' microsomes. The results of anti-oxidant activity of the cell free extracts by S. rerevisiae FF-8 cultured in the YM optimal medium was shown in the following order . $ liver 60.98\% > kidney 56.43\% > heart 52.91\% > brain 52.13\% > testis 45.57\% > spleen 42.95\% $. In antioxidative activities determined by ferric thiocyanate method and TBA methods against lipid peroxidation, the lipid peroxidation in the control mixture increased more rapidly than the typical peroxidation curve of linoleic acid from one day. The antioxidative activity of the cell free extracts by cultivating S. cerevisine FF-8 in the YM optimal medium were higher than that of the YM basal medium. These data indicate that the cell free extracts containing a high intercellular glutathione of S. cerevisiae FF-8 cultured in YM optimal medium showed strong antioxidative capacities by DPPH radical scavenging activity and ferric thiocyanate and TBARS measurements.
Keywords
Saccharomyces cerevisiae FF-8; Clutathione; Antioxidation; TBARS;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Rashid, M. H., F. Kato and A. Murata. 1992. Effect of Microorganism on the Peroxidation of Lipid and Fatty Acid composition of fermented Fish Meal. Biosci. Biotechnol. Biochem. 56, 1058-1061   DOI
2 Sakato, K. and H. Tanaka, 1992. Advanced control of glutathione fermentation process. Biotechnol. Bioeng. 40, 904-912   DOI
3 Shi, H., J. G. Hudson and K. J. Liu. 2004. Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radic. Biol. Med. 37, 582-593   DOI   ScienceOn
4 Sollod, C. C., A. E. Jenns and M. E. Daub. 1992. Cell surface redox potential as a mechanism of defense against photosensitizers in fungi. Appl. Environ. Microbial. 58, 444-449
5 Stephen, D. W. and D. J. Jamieson. 1996. Glutathione is an important antioxidant molecule in the yeast Saccharomyces cerevisiae. FMES Microbial. Lett 141, 207-212   DOI
6 Cha, J. Y, H. J. Kim, B. S. Jun, J. C. Park, M. Ok and Y. S. Cho . 2003. Antioxidative activities and produced condition of antioxidative substance by Bacillus sp. FF-8. J. Korean Soc. Agric. Chem. Biotechnol. 46, 165-170
7 Cha, J. Y., J. C. Park, B. S. Jeon, Y. C. Lee and Y. S. Cho. 2004. Optimal fermentation conditions for enhanced glutathione production by Saccharomyces cerevisiae FF-8. J. Microbiol. 42, 51-5
8 Decker, E. and H. Faraji. 1990. Inhibition of lipid oxidation by carnosine. JAOCS 67, 650-652   DOI
9 Farmer, E. H., A. Bloomfield, A. Sundralingan and D. A. Sutton. 1942. The couse and mechanism of autoxidation reactions in olefinic and polyolefinic substances, including rubber. Trans Faraday Soc. 38, 348-356   DOI
10 Goto, S., K. Yoshida, T. Morikawa, Y. Urata, K. Suzuki and T. Kondo. 1995. Augmentation of transport for cisplatinglutathione adduct in cisplatin-resistant cancer cells. Cancer Res. 55, 4297-4301
11 Grant, C. M. 2001. Role of the glutathione/ glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol. Microbial. 39, 533-541   DOI   ScienceOn
12 Halliwell, B. and J. M. C. Gutteridge. 1990. Role of free radicals and catalyticmetal ions in human disease: an overview. Methods in Enzymol. 186, 1-85   DOI
13 Jamieson, D. J. 1998. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14, 1511-1527   DOI   ScienceOn
14 Kato, F., J. Nakazato, A. Murata, S. Okamoto and Y. Yone. 1986. Utilization of waste fish treatment with microorganisms. Part II. Use of waste fish from large scale production of fermented fish meal and its feed efficiency. Nippon Nogeikagaku Kaishi 60, 287-293   DOI
15 Kim, W. G., J. P. Kim and I. D. Yoo. 1996. Benzastatins A, B, C, and D: new free radical scavengers from Streptomyces nitrosporeus 30643. II. Structural determination. J. Antibiotics 49, 26-30   DOI   ScienceOn
16 Abe, N., T. Murata and A. Hirota. 1998. Novel DPPH radical scavengers, bisorbicillinol and demethyitrichodimeroI, from a fungus. Biosei. Biotheenol. Bioehem. 62, 661-666
17 Al-Saikhan, M. S., L. R. Howard and J. C. Miller Jr. 1995. Antioxidant activity and total pheno;ics in different genotypes of potato (Solanum tuberosum 1.). J. Food Sci. 60, 341-343   DOI   ScienceOn
18 Berhane, K, M. Widersten, A. Engstrom, J. W. Kozarich and B. Mannervik. 1994. Detoxication of base propenals and other ${\alpha}$, ${\beta}$-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferase. Proc. NatI. Acad, Sci. USA, 91, 1480-1484
19 Bertelsen, G., C. Christophersen, P. H. Nielsen, H. J. Madsen and P. Stadel. 1995. Chromatographic isolation of antioxidants guided by a methyl linoleate assay. J. Agric. Food Chem. 43, 1272-1275   DOI   ScienceOn
20 Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Natu. 26, 1199-1200
21 Brand-Williams, w., M. E. Cuvelier, C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28, 25-30   DOI   ScienceOn
22 Park, J. C., O. Min, J. Y. Cha and Y. S. Cho. 2003. Isolation and identification of the glutathione producing Saccharomyces cerevisiae FF-8 from Korean traditional rice wine and optimal producing conditions. J. Korean Soc. Agric. Chem. Biotechnol. 46, 348-352
23 Ishikawa, Y., K Morimoto and T. Hamashaki. 1985. --- . J. Food Sci. 50, 1742-1744   DOI
24 Pacifici, R. E. and K. J. Davies. 1991. Protein, lipid, and DNA repair systems in oxidative stress: the free-radical theory of aging revisited. Gerontal. 37, 166-180   DOI   ScienceOn
25 Wei, G., Y. Li and J. Chen. 2003. Effect of surfactants on extracellular accumulation of glutathione by Saccharomyces cerevisiae. Process Biochem. 38, 1133-1138   DOI   ScienceOn
26 Xin, Z., K. S. Song and M. R. Kim. 2004. Antioxidant activity of salad vegetables grown in Korean. J. Food Sci. Nutr. 9, 289-294   DOI   ScienceOn
27 Cha, J. Y., Y. Mameda, K. Oogami, K Yamamoto and T. Yanagita. 1998. Association between hepatic triacylglycerol accumulation induced by administering orotic acid and enhanced phosphatidate phosphohydrolase activity in rats. Biosci. Biotechnol. Biochem. 62, 508-513   DOI   ScienceOn
28 Lowry, O.H., N. J. Rosebrough, A. J. Farr and R. S. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275
29 Meister, A. and S. S. Tate. 1976. Glutathione and related ${\gamma}$-glutamyl compounds: biosynthesis and utilization. Ann. Rev. Biochem. 45, 559 - 604   DOI   ScienceOn
30 Ohkawa, H., N. Ohishi and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-358   DOI   ScienceOn
31 Perego, P., J. V. Weghe, D. W. Ow and S. B. Howell. 1997. Role of determinants of cadmium sensitivity in the tolerance of Schizosaccharomyces pombe to cisplatin. Molecul. Pharmacal. 51, 12-18