• Title/Summary/Keyword: ingot

Search Result 378, Processing Time 0.019 seconds

Investigating the Iron-Making Process through the Scientific Analysis of By-products Obtained during Iron-Making from Songdu-ri Site in Jincheon, Korea

  • Jung, Da Yeon;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.33-44
    • /
    • 2022
  • The study, iron-making process was examined through the scientific analysis of six by-products that were obtained during iron making at the Songdu-ri site in Jincheon. The total Fe content of the slags excavated from the Songdu-ri site was 36.29-54.61 wt%, whereas the deoxidation agent was 26.48-49.08 wt%. The compound analysis result indicated that fayalite and wüstite are the main compounds in slag. Furthermore, the microstructure analysis result confirmed the presence of fayalite and wüstite in the slag. It can be inferred from the flat shape in a bright matrix structure of the hammer scales that forging was performed in the latter stage. The Raman micro-spectroscopy results confirmed that the surface was hematite (Fe2O4), middle layer was magnetite (Fe3O4), and inner layer was wüstite (FeO). The presence of smelting and smithing slags, spheroid hammer scales, and flake hammer scales suggests that at the Songdu-ri site, iron-making process is carried out by division of labor into producing iron bloom through direct smelting, refining and forge welding, and ingot production.

Understanding of the effect of charge size to temperature profile in the Czochralski method (쵸크랄스키법에서 온도 프로파일에 대한 충진사이즈의 효과에 대한 이해)

  • Baik, Sungsun;Kwon, Sejin;Kim, Kwanghun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.4
    • /
    • pp.141-147
    • /
    • 2018
  • Solar energy has attracted big attentions as one of clean and unlimited renewable energy. Solar energy is transformed to electrical energy by solar cells which are comprised of multi-silicon wafer or mono-silicon wafer. Monosilicon wafers are fabricated from the Czochralski method. In order to decrease fabrication cost, increasing a poly-silicon charge size in one quartz crucible has been developed very much. When we increase a charge size, the temperature control of a Czochralski equipment becomes more difficult due to a strong melt convection. In this study, we simulated a Czochralski equipment temperature at 20 inch and 24 inch in quartz crucible diameter and various charge sizes (90 kg, 120 kg, 150 kg, 200 kg, 250 kg). The simulated temperature profiles are compared with real temperature profiles and analyzed. It turns out that the simulated temperature profiles and real temperature profiles are in good agreement. We can use a simulated profile for the optimization of real temperature profile in the case of increasing charge sizes.

Analysis of Void Closure in the Upsetting Process of Large-Ingot (대형강괴 업셋팅공정의 기공압착 해석)

  • 박치용;조종래;양동열;김동진;박일수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1877-1889
    • /
    • 1992
  • Upsetting is performed in open-die press forging to deform metal in all directions in order to enhance soundness of a product and reduce directionality of properties caused by casting. It is necessary to ensure sufficient forging ratio for subsequent cogging operations and consolidate the void along the centerline. To obtain these benefits, the upper die shape (dome and dished shape) is considered as an upsetting parameter. Thermo-viscoplastic finite element analysis has been carried out so as to understand the influence of upper die shape on the effective strain, hydrostatic stress and temperature in the upset-forged ingots without internal defects. The analysis is focused on the investigation into internal void closure in ingots with pipe holes and circular voids. The computational results have shown that the volume fraction of the void is independent of the circular void size and the closure of internal voids is much more influenced by the effective strain than the hydrostatic stress around the void. It is finally suggested that the height reduction must be over 35% for consolidation of internal voids.

A Study of Material Removal Characteristics by Friction Monitoring System of Sapphire Wafer in Single Side DMP (사파이어 웨이퍼 DMP에서 마찰력 모니터링을 통한 재료 제거 특성에 관한 연구)

  • Jo, Wonseok;Lee, Sangjik;Kim, Hyoungjae;Lee, Taekyung;Lee, Seongbeom
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.56-60
    • /
    • 2016
  • Sapphire has a high hardness and strength and chemical stability as a superior material. It is used mainly as a material for a semiconductor as well as LED. Recently, the cover glass industry used by a sapphire is getting a lot of attention. The sapphire substrate is manufactured through ingot sawing, lapping, diamond mechanical polishing (DMP) and chemical mechanical polishing (CMP) process. DMP is an important process to ensure the surface quality of several nm for CMP process as well as to determine the final form accuracy of the substrate. In DMP process, the material removal is achieved by using the mechanical energy of the relative motion to each other in the state that the diamond slurry is disposed between the sapphire substrate and the polishing platen. The polishing platen is one of the most important factors that determine the material removal characteristics in DMP. Especially, it is known that the geometric characteristics of the polishing platen affects the material removal amount and its distribution. This paper investigated the material removal characteristics and the effects of the polishing platen groove in sapphire DMP. The experiments were preliminarily carried out to evaluate the sapphire material removal characteristics according to process parameters such as pressure, relative velocity and so on. In the experiment, the monitoring apparatus was applied to analyze process phenomena in accordance with the processing conditions. From the experimental results, the correlation was analyzed among process parameters, polishing phenomena and the material removal characteristics. The material removal equation based on phenomenological factors could be derived. And the experiment was followed to investigate the effects of platen groove on material removal characteristics.

Electrodeposition of Silicon in Ionic Liquid of [bmpy]$Tf_2N$

  • Park, Je-Sik;Lee, Cheol-Gyeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Silicon is one of useful materials in various industry such as semiconductor, solar cell, and secondary battery. The metallic silicon produces generally melting process for ingot type or chemical vapor deposition (CVD) for thin film type. However, these methods have disadvantages of high cost, complicated process, and consumption of much energy. Electrodeposition has been known as a powerful synthesis method for obtaining metallic species by relatively simple operation with current and voltage control. Unfortunately, the electrodeposition of the silicon is impossible in aqueous electrolyte solution due to its low oxidation-reduction equilibrium potential. Ionic liquids are simply defined as ionic melts with a melting point below $100^{\circ}C$. Characteristics of the ionic liquids are high ionic conductivities, low vapour pressures, chemical stability, and wide electrochemical windows. The ionic liquids enable the electrochemically active elements, such as silicon, titanium, and aluminum, to be reduced to their metallic states without vigorous hydrogen gas evolution. In this study, the electrodeposion of silicon has been investigated in ionic liquid of 1-butyl-3-methylpyrolidinium bis (trifluoromethylsulfonyl) imide ([bmpy]$Tf_2N$) saturated with $SiCl_4$ at room temperature. Also, the effect of electrode materials on the electrodeposition and morphological characteristics of the silicon electrodeposited were analyzed The silicon electrodeposited on gold substrate was composed of the metallic Si with single crystalline size between 100~200nm. The silicon content by XPS analysis was detected in 31.3 wt% and the others were oxygen, gold, and carbon. The oxygen was detected much in edge area of th electrode due to $SiO_2$ from a partial oxidation of the metallic Si.

  • PDF

The Effect of Slurry and Wafer Morphology on the SiC Wafer Surface Quality in CMP Process (CMP 공정에서 슬러리와 웨이퍼 형상이 SiC 웨이퍼 표면품질에 미치는 영향)

  • Park, Jong-Hwi;Yang, Woo-Sung;Jung, Jung-Young;Lee, Sang-Il;Park, Mi-Seon;Lee, Won-Jae;Kim, Jae-Yuk;Lee, Sang-Don;Kim, Ji-Hye
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.312-315
    • /
    • 2011
  • The effect of slurry composition and wafer flatness on a material removal rate (MRR) and resulting surface roughness which are evaluation parameters to determine the CMP characteristics of the on-axis 6H-SiC substrate were systematically investigated. 2-inch SiC wafers were fabricated from the ingot grown by a conventional physical vapor transport (PVT) method were used for this study. The SiC substrate after the CMP process using slurry added oxidizers into slurry consisted of KOH-based colloidal silica and nano-size diamond particle exhibited the significant MRR value and a fine surface without any surface damages. SiC wafers with high bow value after the CMP process exhibited large variation in surface roughness value compared to wafer with low bow value. The CMPprocessed SiC wafer having a low bow value of 1im was observed to result in the Root-mean-square height (RMS) value of 2.747 A and the mean height (Ra) value of 2.147 A.

A STUDY ON THE FLEXURAL STRENGH OF HEAT-PRESSED CERAMICS ACCORDING TO SPRUE DESIGNS (주입선 설계에 따른 Heat-pressed ceramic의 파절강도에 관한 연구)

  • Oh, Sang-Chun;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.130-143
    • /
    • 1997
  • A heat-pressed technique(IPS-Empress, Ivoclar) has been described to construct single unit crown, inlay/onlay and veneers using a partially pre-cerammed and pre-colored glass-leucite ingot that has the greateast strength by the combination of heat-pressed procedure through the smalldiameter sprue and heat treatment procedure. The purpose of this study was to evaluate the flexure strength of a heat-pressed ceramic material(IPS-Empress) without simulated firing treatments according to pontic designs. Two groups of 9 disks(1.4mm thick, 14mm in diameter) each using two types of sprues with different diameters($({\Phi}2.8\;,{\Phi}1.8)$) and numbers were prepared. The specimens were mounted in the testing jig. The flexural strengths were determined, by means of the bi-axial bending test, by loading the center of disk to failure using a universal testing machine(Zwick 145141, Zwick, Germany) at a cross-head speed of 1.0 mm/min. The means flexural strength value of one group using a sprue with ${\Phi}2.8$ was $140.4{\pm}8.0Mpa$. That of the other group using two sprues with ${\Phi}1.8$ was $151.8{\pm}10.3Mpa$. After analysis, results showed that there was a statistical difference between groups(t=2.33m p<0.05). No clnical implications were drawn from these data because of absence of simulated firing treatment.

  • PDF

Recycling of Ti Turning Scraps for Production of Consumable Arc Electrode (아크용(用) 소모성(消耗性) 전극(電極) 제조(製造)를 위한 타이타늄 선삭(旋削) 스크랩의 재활용(再活用))

  • Oh, Jung-Min;Lim, Jae-Won
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.58-64
    • /
    • 2012
  • Ti button type ingots were prepared by recycling of Ti turning scraps using vacuum arc melting process for production of consumable arc electrode. The behavior of impurities such as Fe, W, O, and N in the Ti button ingots was investigated and the properties of the Ti button ingots were also evaluated. In the case of oxygen gaseous impurity, the oxygen layers on the surface of the Ti turning scraps were easily removed by the first vacuum arc melting. On the other hand, the solute oxygen in the Ti turning scraps was not removed by the next melting. In the case of Fe, major impurity in the Ti turning scraps, the removal degree in the final Ti button ingot refined by vacuum arc melting for 20 minutes was approximately 43 %, which is due to the vapor pressure difference between Ti and Fe. As a result, the Ti button ingots with ASTM grade 3 could be obtained by multiple vacuum arc melting from the Ti turning scraps. Therefore, it was confirmed that the preparation of consumable electrode for vacuum arc remelting could be possible by recycling of Ti turning scraps.

Trend on the Recycling Technologies for Silicon Sludge by the Patent and Paper Analysis (특허(特許)와 논문(論文)으로 본 실리콘 슬러지의 재활용(再活用) 기술(技術) 동향(動向))

  • Jang, Hee-Dong;Kil, Dae-Sup;Chang, Han-Kwon;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.60-68
    • /
    • 2012
  • Silicon wafer for making semiconductor devices and solar cell is used in the semiconductor and solar industry, respectively. Silicon wafer is produced by cutting with silicon ingot and sludge contains silicon occurs from cutting process. Generation of silicon sludge is increasing on developing all industry sectors which have need of semiconductor device. These days it has been widely studied for the recycling technologies of the silicon sludge from view points of economy and efficiency. In this paper, patents and paper on the recycling technologies of the silicon sludge were analyzed. The range of search was limited in the open patents of USA (US), European Union (EU), Japan (JP), Korea (KR) and SCI journals from 1982 to 2011. Patents and journals were collected using key-words searching and filtered by filtering criteria. The trends of the patents and journals was analyzed by the years, countries, companies, and technologies.

High Strength SA508 Gr.4N Ni-Cr-Mo Low Alloy Steels for Larger Pressure Vessels of the Advanced Nuclear Power Plant (차세대 원전 대형 압력용기용 고강도 SA508 Gr.4N Ni-Cr-Mo계 저합금강 개발)

  • Kim, Min-Chul;Park, Sang-Gyu;Lee, Ki-Hyoung;Lee, Bong-Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.100-106
    • /
    • 2014
  • There is a growing need to introduce advanced pressure vessel steels with higher strength and toughness for the optimizatiooCn of the design and construction of longer life and larger capacity nuclear power plants. SA508 Gr.4N Ni-Cr-Mo low alloy steels have superior strength and fracture toughness, compared to SA508 Gr.3 Mn-Mo-Ni low alloy steel. Therefore, the application of SA508 Gr.4N low alloy steel could be considered to satisfy the strength and toughness required in advanced nuclear power plants. The purpose of this study is to characterize the microstructure and mechanical properties of SA508 Gr.4N low alloy steels. 1 ton ingot of SA508 Gr.4N model alloy was fabricated by vacuum induction melting followed by forging, quenching, and tempering. The predominant microstructure of the SA508 Gr.4N model alloy is tempered martensite having small packet and fine Cr-rich carbides. The yield strength at room temperature was 540MPa, and it was decreased with an increase of test temperature while DSA phenomenon occurred at around $288^{\circ}C$. Overall transition property of SA508 Gr.4N model alloy was much better than SA508 Gr.3 low alloy steel. The index temperature, $T_{41J}$, of SA508 Gr.4N model alloy was $-132^{\circ}C$ in Charpy impact tests, and reference nil-ductility transition temperature, $RT_{NDT}$ of $-105^{\circ}C$ was obtained from drop weight tests. From the fracture toughness tests performed in accordance with the ASTM standard E1921 Master curve method, the reference temperature, $T_0$ was $-147^{\circ}C$, which was improved more than $60^{\circ}C$ compared to SA508 Gr.3 low alloy steels.