DOI QR코드

DOI QR Code

Recycling of Ti Turning Scraps for Production of Consumable Arc Electrode

아크용(用) 소모성(消耗性) 전극(電極) 제조(製造)를 위한 타이타늄 선삭(旋削) 스크랩의 재활용(再活用)

  • Oh, Jung-Min (Mineral Resource Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Lim, Jae-Won (Mineral Resource Research Division, Korea Institute of Geoscience & Mineral Resources)
  • 오정민 (한국지질자원연구원 광물자원연구본부) ;
  • 임재원 (한국지질자원연구원 광물자원연구본부)
  • Received : 2012.07.05
  • Accepted : 2012.09.11
  • Published : 2012.10.30

Abstract

Ti button type ingots were prepared by recycling of Ti turning scraps using vacuum arc melting process for production of consumable arc electrode. The behavior of impurities such as Fe, W, O, and N in the Ti button ingots was investigated and the properties of the Ti button ingots were also evaluated. In the case of oxygen gaseous impurity, the oxygen layers on the surface of the Ti turning scraps were easily removed by the first vacuum arc melting. On the other hand, the solute oxygen in the Ti turning scraps was not removed by the next melting. In the case of Fe, major impurity in the Ti turning scraps, the removal degree in the final Ti button ingot refined by vacuum arc melting for 20 minutes was approximately 43 %, which is due to the vapor pressure difference between Ti and Fe. As a result, the Ti button ingots with ASTM grade 3 could be obtained by multiple vacuum arc melting from the Ti turning scraps. Therefore, it was confirmed that the preparation of consumable electrode for vacuum arc remelting could be possible by recycling of Ti turning scraps.

본 연구는 타이타늄 선삭 스크랩을 진공 아크 용해에 의해 건전한 버튼형 잉곳으로 제조하여 아크 발생용 소모성 전극으로의 재활용을 위해 타이타늄 내 불순물의 거동 및 특성을 평가하였다. 먼저 가스불순물인 산소는 진공 아크 용해에 의해 초기 표면의 산화층에 의해 제거되지만 이후 타이타늄에 고용된 산소는 제거되지 않는 것으로 확인되었다. 타이타늄 스크랩의 대표 금속불순물인 철의 경우 타이타늄과의 증기압 차이로 인해 진공 아크 용해에 의해 최종 20분간 용해시 약 43%의 제거율을 보이며, 최종 제조된 타이타늄 버튼형 잉곳은 ASTM 규격의 순 타이타늄 등급 3에 해당하는 순도를 보여 VAR(Vacuum Arc Remelting)용 소모성 전극의 제조에 가능한 것으로 확인하였다.

Keywords

References

  1. The Korea International Trade Association, Homepage http://www.kita.net.
  2. Oh J. M. et al., 2011: Oxygen Effect on the Mechanical Properties and Lattice Strain of Ti and Ti-6Al-4V, Met. Mater. Int., 17(5), pp. 733-736. https://doi.org/10.1007/s12540-011-1006-2
  3. Reitz J. et al., 2011: Recycling of gamma titanium aluminide scrap from investment casting operations, Inermetallics, 19, pp. 762-768. https://doi.org/10.1016/j.intermet.2010.11.015
  4. Zheng H. et al., 2008: Recovery of titanium metal scrap by utilizing chloride wastes, J. Alloys Compds., 461, pp. 459- 466. https://doi.org/10.1016/j.jallcom.2007.07.025
  5. Vutova K. et al., 2010: Investigation of electron beam melting and refining of titanium and tantalum scrap, J. Mater. Processing Technology, 210, pp. 1089-1094. https://doi.org/10.1016/j.jmatprotec.2010.02.020
  6. Burkhard R. et al., 1994: Recycling of metals from waste with thermal plasma, Resources, Conservation and Recycling, 10, pp. 11-16. https://doi.org/10.1016/0921-3449(94)90033-7
  7. Oh J. M. et al., 2012: Preparation and oxygen control of Ti- 6Al-4V alloys by recycling dental pure Ti scraps, J. of Korean Inst. of Resources Recycling, 21(1), pp. 60-65.
  8. Wasz M. L. et al., 1989: The effect of hydrogen on mechanical properties of oxygen-strengthened titanium, Scripta Metallurgica, 23(12), pp. 2039-2042. https://doi.org/10.1016/0036-9748(89)90228-7
  9. Lu. X. et al., 2012: Thermodynamic analysis of separation of alloying elements in recycling of end-of-life titanium products, Sep. Purif. Tech., 89, pp. 135-141. https://doi.org/10.1016/j.seppur.2012.01.008
  10. Choi G. S. et al., 2009: Preparation of 5N grade tantalum by electron beam melting, J. Alloys Compds., 469 pp. 298- 303. https://doi.org/10.1016/j.jallcom.2008.01.103
  11. Lim J. W. et al., 2010: Hydrogen effect on refining of Mo metal by Ar-$H_{2}$ plasma melting, Mater. Lett., 64 pp. 2290- 2292. https://doi.org/10.1016/j.matlet.2010.07.067
  12. Choi G. S. et al., 2009: Purity evaluation of Ta metal refined by Ar/$H_{2}$ plasma arc melting, Met. Mater. Int., 14(4) pp. 539-543.
  13. Choi G. S., 2009: A technological development for utilization of the titanium scrap recycling, Korea Institute of Geoscience and Mineral Resources, Final Report.
  14. Shim G. C. et al., 1995: Effects of Changes in O/Fe Contents on Mechanical Properties of Commercially Pure Titanium, J. of the Korean Inst. of Met. & Mater., 33(1) pp. 14-20.
  15. H. Sibum, 2003: Titanium and Titanium alloys, Adv. Eng. Mater., 5(6) pp. 393-398. https://doi.org/10.1002/adem.200310092

Cited by

  1. Deoxidation of Titanium Scrap by Calciothermic Reduction vol.22, pp.6, 2013, https://doi.org/10.7844/kirr.2013.22.6.41
  2. Recycling and Applications of Titanium Alloy Scraps vol.19, pp.2, 2013, https://doi.org/10.7464/ksct.2013.19.2.075