• Title/Summary/Keyword: infrared satellite image

Search Result 101, Processing Time 0.026 seconds

Cloud-Type Classification by Two-Layered Fuzzy Logic

  • Kim, Kwang Baek
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • Cloud detection and analysis from satellite images has been a topic of research in many atmospheric and environmental studies; however, it still is a challenging task for many reasons. In this paper, we propose a new method for cloud-type classification using fuzzy logic. Knowing that visible-light images of clouds contain thickness related information, while infrared images haves height-related information, we propose a two-layered fuzzy logic based on the input source to provide us with a relatively clear-cut threshold in classification. Traditional noise-removal methods that use reflection/release characteristics of infrared images often produce false positive cloud areas, such as fog thereby it negatively affecting the classification accuracy. In this study, we used the color information from source images to extract the region of interest while avoiding false positives. The structure of fuzzy inference was also changed, because we utilized three types of source images: visible-light, infrared, and near-infrared images. When a cloud appears in both the visible-light image and the infrared image, the fuzzy membership function has a different form. Therefore we designed two sets of fuzzy inference rules and related classification rules. In our experiment, the proposed method was verified to be efficient and more accurate than the previous fuzzy logic attempt that used infrared image features.

Sea fog detection near Korea peninsula by using GMS-5 Satellite Data(A case study)

  • Chung, Hyo-Sang;Hwang, Byong-Jun;Kim, Young-Haw;Son, Eun-Ha
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.214-218
    • /
    • 1999
  • The aim of our study is to develop new algorism for sea fog detection by using Geostational Meteorological Satellite-5(GMS-5) and suggest the techniques of its continuous detection. So as to detect daytime sea fog/stratus(00UTC, May 10, 1999), visible accumulated histogram method and surface albedo method are used. The characteristic value during daytime showed A(min) > 20% and DA < 10% when visble accumulated histogram method was applied. And the sea fog region which detected is of similarity in composite image and surface albedo method. In case of nighttime sea fog(18UTC, May 10, 1999), infrared accumulated histogram method and maximum brightness temperature method are used, respectively. Maximum brightness temperature method(T_max method) detected sea fog better than IR accumulated histogram method. In case of T_max method, when infrared value is larger than T_max, fog is detected, where T_max is an unique value, maximum infrared value in each pixel during one month. Then T_max is beneath 700hpa temperature of GDAPS(Global Data Assimilation and Prediction System). Sea fog region which detected by T_max method was similar to the result of National Oceanic and Atmosheric Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR) DCD(Dual Channel Difference). But inland visibility and relative humidity didn't always agreed well.

  • PDF

Analysis on Optimal Threshold Value for Infrared Video Flame Detection (적외선 영상의 화염 검출을 위한 최적 문턱치 분석)

  • Jeong, Soo-Young;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.100-104
    • /
    • 2013
  • In this paper, we present an optimal threshold setting method for flame detection of infrared thermal image. Conventional infrared flame detection methods used fixed intensity threshold to segment candidate flame regions and further processing is performed to decide correct flame detection. So flame region segmentation step using the threshold is important processing for fire detection algorithm. The threshold should be change in input image depends on camera types and operation conditions. We have analyzed the conventional thresholds composed of fixed-intensity, average, standard deviation, maximum value. Finally, we extracted that the optimal threshold value is more than summation of average and standard deviation, and less than maximum value. it will be enhance flame detection rate than conventional fixed-threshold method.

Extraction of Environmental Informations for Reclaimed Area using Satellite Image Data (인공위성데이타를 이용한 간척지역의 환경정보의 추출)

  • 안철호;김용일;이창노
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.7 no.1
    • /
    • pp.49-57
    • /
    • 1989
  • On this study, we performed the landuse classification using the Landsat data acquired before and after reclamation, and extracted the ground temperature from infrared band(TM band6) data. Using the satellite data, it was possible to extract changes of landuses effectively according to the reclamation, and could obtain the thermal characteristics of the reclaimed area and the surroundings by converting infrared data value into temperatures of surfaces of ground and water. The result of this analysis will be used for the land management of large-scale reclaimed area applying the satellite data and related information.

  • PDF

Image Fusion Framework for Enhancing Spatial Resolution of Satellite Image using Structure-Texture Decomposition (구조-텍스처 분할을 이용한 위성영상 융합 프레임워크)

  • Yoo, Daehoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.21-29
    • /
    • 2019
  • This paper proposes a novel framework for image fusion of satellite imagery to enhance spatial resolution of the image via structure-texture decomposition. The resolution of the satellite imagery depends on the sensors, for example, panchromatic images have high spatial resolution but only a single gray band whereas multi-spectral images have low spatial resolution but multiple bands. To enhance the spatial resolution of low-resolution images, such as multi-spectral or infrared images, the proposed framework combines the structures from the low-resolution image and the textures from the high-resolution image. To improve the spatial quality of structural edges, the structure image from the low-resolution image is guided filtered with the structure image from the high-resolution image as the guidance image. The combination step is performed by pixel-wise addition of the filtered structure image and the texture image. Quantitative and qualitative evaluation demonstrate the proposed method preserves spectral and spatial fidelity of input images.

Flame detection algorithm using adaptive threshold in thermal video (적응 문턱치를 이용한 열영상 화염 검출 알고리즘)

  • Jeong, Soo-Young;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.91-96
    • /
    • 2014
  • This paper proposed an adaptive threshold method for detecting flame candidate regions in a infrared image and it adapts according to the contrast and intensity changes in the image. Conventional flame detection systems uses fixed threshold method since surveillance environment does not change, once the system installed. But it needs a adaptive threshold method as requirements of surveillance system has changed. The proposed adaptive threshold algorithm uses the dynamic behavior of flame as featured parameter. The test result is analysed by comparing test result of proposed adaptive threshold algorithm and conventional fixed threshold method. The analysed data shows, the proposed method has 91.42% of correct detection rate and false detection is reduced by 20% comparing to the conventional method.

An Extraction of Solar-contaminated Energy Part from MODIS Middle Infrared Channel Measurement to Detect Forest Fires

  • Park, Wook;Park, Sung-Hwan;Jung, Hyung-Sup;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.39-55
    • /
    • 2019
  • In this study, we have proposed an improved method to detect forest fires by correcting the reflected signals of day images using the middle-wavelength infrared (MWIR) channel. The proposed method is allowed to remove the reflected signals only using the image itself without an existing data source such as a land-cover map or atmospheric data. It includes the processing steps for calculating a solar-reflected signal such as 1) a simple correction model of the atmospheric transmittance for the MWIR channel and 2) calculating the image-based reflectance. We tested the performance of the method using the MODIS product. When compared to the conventional MODIS fire detection algorithm (MOD14 collection 6), the total number of detected fires was improved by approximately 17%. Most of all, the detection of fires improved by approximately 30% in the high reflection areas of the images. Moreover, the false alarm caused by artificial objects was clearly reduced and a confidence level analysis of the undetected fires showed that the proposed method had much better performance. The proposed method would be applicable to most satellite sensors with MWIR and thermal infrared channels. Especially for geostationary satellites such as GOES-R, HIMAWARI-8/9 and GeoKompsat-2A, the short acquisition time would greatly improve the performance of the proposed fire detection algorithm because reflected signals in the geostationary satellite images frequently vary according to solar zenith angle.

Development of PKNU3: A small-format, multi-spectral, aerial photographic system

  • Lee Eun-Khung;Choi Chul-Uong;Suh Yong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.337-351
    • /
    • 2004
  • Our laboratory originally developed the compact, multi-spectral, automatic aerial photographic system PKNU3 to allow greater flexibility in geological and environmental data collection. We are currently developing the PKNU3 system, which consists of a color-infrared spectral camera capable of simultaneous photography in the visible and near-infrared bands; a thermal infrared camera; two computers, each with an 80-gigabyte memory capacity for storing images; an MPEG board that can compress and transfer data to the computers in real-time; and the capability of using a helicopter platform. Before actual aerial photographic testing of the PKNU3, we experimented with each sensor. We analyzed the lens distortion, the sensitivity of the CCD in each band, and the thermal response of the thermal infrared sensor before the aerial photographing. As of September 2004, the PKNU3 development schedule has reached the second phase of testing. As the result of two aerial photographic tests, R, G, B and IR images were taken simultaneously; and images with an overlap rate of 70% using the automatic 1-s interval data recording time could be obtained by PKNU3. Further study is warranted to enhance the system with the addition of gyroscopic and IMU units. We evaluated the PKNU 3 system as a method of environmental remote sensing by comparing each chlorophyll image derived from PKNU 3 photographs. This appraisement was backed up with existing study that resulted in a modest improvement in the linear fit between the measures of chlorophyll and the RVI, NDVI and SAVI images stem from photographs taken by Duncantech MS 3100 which has same spectral configuration with MS 4000 used in PKNU3 system.

Investigation of sea skin surface effects and sea surface emissivity effects based on thermal infrared camera image

  • Tamba, Sumio;Yoshimori, Kyu;Inomata, Kazuya
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.657-662
    • /
    • 2002
  • Sea surface temperatures (SSTs) estimated from satellite data are affected by various kinds of disturbance factors. In order to accurately estimate SSTs based on radiometric data observed by satellite, it is important to correct the effects by these disturbance factors. We obtained a huge data set of skin sea surface temperature images observed by a thermal infrared camera (TIC) in MUBEX Campaign. TIC installed on an observation vessel recorded sea surface skin temperature distribution under various weather conditions. Based on some special images observed by TIC, we estimated skin effects and effective sea surface emissivity. In this paper, we report the methods and results of these estimations.

  • PDF

Visualization of wildfire based on FIRMS API (FIRMS API를 이용한 GIS기반 산불 확산정보의 시각화)

  • Lee, Byung Hyun;Son, Min Woo;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.454-454
    • /
    • 2022
  • Residents near the fire site are more anxious as they rely only on media information and the government's evacuation order due to the lack of information to understand the progress of the wildfire. Therefore, in the event of a wildfire, we try to understand the inconvenience of not being able to know the progress of the fire and solve it. This makes it possible to check the progress of wildfires and the spread of debris using the system interface (API) and weather data of the thermal infrared satellite image data (NASA FIRMS, Fire Information for Resource Management System), and finally, the purpose of this study. The results are provided through the Web including GIS-based visualization to provide decision-making reference information for evacuation in the event of a forest fire from the perspective of residents.

  • PDF