Browse > Article
http://dx.doi.org/10.7780/kjrs.2004.20.5.337

Development of PKNU3: A small-format, multi-spectral, aerial photographic system  

Lee Eun-Khung (Department of Satellite Information Sciences, Pukyong National University)
Choi Chul-Uong (Department of Satellite Information Sciences, Pukyong National University)
Suh Yong-Cheol (Department of Satellite Information Sciences, Pukyong National University)
Publication Information
Korean Journal of Remote Sensing / v.20, no.5, 2004 , pp. 337-351 More about this Journal
Abstract
Our laboratory originally developed the compact, multi-spectral, automatic aerial photographic system PKNU3 to allow greater flexibility in geological and environmental data collection. We are currently developing the PKNU3 system, which consists of a color-infrared spectral camera capable of simultaneous photography in the visible and near-infrared bands; a thermal infrared camera; two computers, each with an 80-gigabyte memory capacity for storing images; an MPEG board that can compress and transfer data to the computers in real-time; and the capability of using a helicopter platform. Before actual aerial photographic testing of the PKNU3, we experimented with each sensor. We analyzed the lens distortion, the sensitivity of the CCD in each band, and the thermal response of the thermal infrared sensor before the aerial photographing. As of September 2004, the PKNU3 development schedule has reached the second phase of testing. As the result of two aerial photographic tests, R, G, B and IR images were taken simultaneously; and images with an overlap rate of 70% using the automatic 1-s interval data recording time could be obtained by PKNU3. Further study is warranted to enhance the system with the addition of gyroscopic and IMU units. We evaluated the PKNU 3 system as a method of environmental remote sensing by comparing each chlorophyll image derived from PKNU 3 photographs. This appraisement was backed up with existing study that resulted in a modest improvement in the linear fit between the measures of chlorophyll and the RVI, NDVI and SAVI images stem from photographs taken by Duncantech MS 3100 which has same spectral configuration with MS 4000 used in PKNU3 system.
Keywords
Multi-spectral Automatic Aerial Photographic system; PKNU 3; Thermal Infrared Sensor; Multi-spectral Camera;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Buschmann , C. and E. Nagel, 1993. In vivo spectroscopy of internal optics of leaves as basis for remote sensing of vegetation, International Journal of Remote Sensing, 14(4): 711-722
2 Clive S. Fraser, 1997. Digital camera self-calibration, ISPRS Journal of Photogrammetry and Remote Sensing, 52(4): 149-159
3 Cramer, M., D. Stallmann, and N. Haala, 1997. High precision georeferencing using GPS/INS and image matching, Proc. International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation, Banff, Canada, pp.453-462
4 Huete, A. R., G. Hua, J. Qi, A. Chehbouni and W. J. Van Leeuwem, 1992. . Normalization of Multidirectional Red and Near-Infrared Reflectances with the SAVI,. Remote Sensing of Environment, 40: 1-20
5 Jordan, C. F., 1969. Derivation of leaf area index from quality of lighton the forest floor, Ecology, 50: 663-666
6 Lichtenthaler, H. K., A. Gitelson, M. Lang, 1996. Nondestructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements, Journal of Plant Physiology, 148: 483-493
7 Park, W-Y, K-W Lee, J-O Lee, and G-U Jeong, 2004, Block Adjustment with GPS/INS in Aerial Photogrammetry, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, 22(3): 285-291
8 Running, S. W., C. O. Justice, V. Solomonson, D.Hall, J. Baker, Y. J. Kaufmann, A. H. Strahller, A. R. Heute, J. P. Muller, V. Vanderbilt, Z. M. Wan, P. Teillet, and D. Cameggie, 1994. Terrestrial Remote Sensing Science and Algorithms Planned for EOS/MODIS, Int. Journal of Remote Sensing, 15(17): 3587-3620   DOI   ScienceOn
9 Graham R.and A. Koh, 2002. Digital Aerial Survey Theory and Practice, whittles Publishing, pp.52-121
10 Heute, A. and C. Justice, 1999. MODIS Vegetation Index(MOD 13) Algorithm Theoretical Basis Document, Greenbelt: NASA Goddard Space Flight Center, http://modarch.gsfc.nasa.gov/MODISJLAND/#Vegetation indices, 129p
11 Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering, 1973. Monitoring vegetation systems in the great plains with ERTS, Third ERTS Symposium, NASA SP-351, vol. 1, NASA, Washington DC, pp.309-317
12 Huete, A. R., 1996. A Soil-adjusted Vegetation Index(SAVI), Remote sensing of Environment, 25: 295-309
13 Mostafa, M. M. R. and K. P. Schwarz,2001.Digital image georeferencing from a multiple camera system by GPS/INS, ISPRS Journal of Photogrammetry & Remote Sensing, 5(1): 1-12
14 Riethmuller, R., J. H. M. Hakvoort, M. Heineke, K. Heymann, H. Kuhl, and G. Witte, 1998. Relating erosion shear stress to tida lflat surface colour. In: Black, K.S., Paterson, D.M., Cramp, A. (Eds.), Sedimentary Processes in the Intertidal Zone. Special Publications 139. Geological Society, London, pp.283-293
15 Schmidtke, H., 1993. Die fraktale Geometrie von Sturmschaden-flachen im Wald, AFZ/Der Wald, 14:710-712
16 Ackermann, F. and H. Schade, 1993. Application of GPS for Aerial Triangulation, Photogrammetiric Engineering & Remote Sensing, 59(11): 18-39
17 Koch, B., D. Munch, T. Probsting, 1998. Totholz als okosystemare Eingangsgrosse, In: Fischer, A.(Ed.), Die Entwicklung von Wald-Biozo nosen nach Sturmwurf. Landsberg, Baden- Wurttemberg, pp.64-73
18 L. Shukai, 1992. Analysis of Remote Sensing of Global Environment and Resources, Surveying and Mapping Press, Beijing
19 Nusslein, S., A. Greune, H. Adler, A. Troycke, G. Faisst, S Reimeier, and R. Dietrich, 1997. Totholzfliichen und Waldstrukturdaten im Nationalpark Bayerischer Wald (19961/1997), Bayerische Landesanstalt fur Wald und Forstwirtschaft, Dfreising
20 Heute, A. F. and H. Q. Liu, 1994. An Error and Sensitivity Analysis of the Atmospheric-and Solid-Collecting Variants of the Normalized Difference Vegetation Index for the MODISEOS, IEEE Transactions on Geoscience and Remote Sensing, 32(4): 897-905
21 Scherrer, H. U., 1993. Projekt zur flachenhaften Erfassung und Auswertung von Sturmschaden, AFZ/IDer Wald, 14: 712-714
22 Hagerthey, S. E., D. M. Paterson, and J. Kromkamp, 2002. Monitoring estuarine ecosystems: the Eden Estuary and the BIOPTIS programme. Estuarine and Coastal Sciences Association, 2003. Coastal Zone Topics, 5. The Estuaries and Coasts of North-East Scotland. Aberdeen, Estuarine and Coastal Sciences Association, pp.89-97
23 G. J. C. Underwood, and J. Krornkamp, 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Advances in Ecological Research, 29: 93-153
24 Hakvoort, J. H. M., M. Heineke, K. Heyman, H. Kuhl, R. Riethmuller, and G. Witte, 1998. A basis for mapping the erodibility of tidal flats by optical remote sensing. Marine and Freshwater Research, 49: 867-873   DOI   ScienceOn
25 Mason, S., H. Ruther, and J. Srnit, 1997. Investigation of the Kodak DCS460 digital camera for small-area mapping, ISPRS Journal of Photogrammetry & Remote Sensing, 52(5): 202-214
26 Jensen J. R., H-S Chae, G-E Kim, S-J Kim, Y-S Kim, K-S Lee, K-S Cho, and M-H Jo, 2002 ,Environment Remote Sensing, Sigma Press, Prentice Hall, pp.255-297, 381-386
27 Livingstone, D., J. Raper, and T. McCarthy, 1999. Integrating aerial videography and digital photography with terrain modeling, Geomophology, 29: 77-92
28 Toth, C. and D. A. Grejner-Brzezinska, 1998. Performance analysis Z. of the airborne integrated mapping system AIMSe, Int. Z Arch. Photogr. Remote Sens., 32(2): 320-326
29 Jeong, D-H, and B-G. Kim, 2002. Surveying and Geo-Spatial Information Engineering: Lens Distortion Correction for CCD Camera using Projective Transformation Method, The Korean society of Civil engineers collectedpapers D, 22(5): 995-1001
30 Cramer, M., D. Stallmanl, and N. Halla, 2000. Direct Georereferencing Using GPS/Inertial Exterior Orientations for Photograrnmetric Applications, ISPRS Vol. XXXIII Part B3/l, pp.198-206
31 Murphy, R.J., T. J. Tolhurst, M. G. Chapman, and A. J. Underwood, 2004. Estimation of surface chlorophyll on an exposed mudflat using digital colour-infrared (CIR) photography, Estuarine, Coastal and ShelfScience, 59: 625-638
32 Mostafa, M. M. R., K. P. Schwarz, and P. Gong, 1997. A fully digital system for airborne mapping, Proc.International Symposium on Kinematic Systems in Geodesy, Geomatics, and Navigation, Banff, Alberta, Canada, pp.463-471