• Title/Summary/Keyword: infinite set

Search Result 169, Processing Time 0.021 seconds

A Historical Study on the Interaction of the Limit-the Infinite Set and Its Educational Implications (극한과 무한집합의 상호작용과 그 교육적 시사점에 대한 역사적 연구)

  • Park, Sun-Yong
    • Journal for History of Mathematics
    • /
    • v.31 no.2
    • /
    • pp.73-91
    • /
    • 2018
  • This study begins with the awareness of problem that the education of mathematics teachers has failed to link the limit and the infinite set conceptually. Thus, this study analyzes the historical and reciprocal development of the limit and the infinite set, and discusses how to improve the education of these concepts and their relation based on the outcome of this analysis. The results of the study confirm that the infinite set is the historical tool of linking the limit and the real numbers. Also, the result shows that the premise of 'the component of the straight line is a point.' had the fundamental role in the construction of the real numbers as an arithmetical continuum and that the moral certainty of this premise would be obtained through a thought experiment using an infinite set. Based on these findings, several proposals have been made regarding the teacher education of awakening someone to the fact that 'the theoretical foundation of the limit is the real numbers, and it is required to introduce an infinite set for dealing with the real numbers.' in this study. In particular, by presenting one method of constructing the real numbers as an arithmetical continuum based on a thought experiment about the component of the straight line, this study opens up the possibility of an education that could get the limit values psychologically connected to the infinite set in overcoming the epistemological obstacle related to the continuum concept.

Mathematical Infinite Concepts in Arts (미술에 표현된 수학의 무한사상)

  • Kye, Young-Hee
    • Journal for History of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.53-68
    • /
    • 2009
  • From ancient Greek times, the infinite concepts had debated, and then they had been influenced by Hebrew's tradition Kabbalab. Next, those infinite thoughts had been developed by Roman Catholic theologists in the medieval ages. After Renaissance movement, the mathematical infinite thoughts had been described by the vanishing point in Renaissance paintings. In the end of 1800s, the infinite thoughts had been concreted by Cantor such as Set Theory. At that time, the set theoretical trend had been appeared by pointillism of Seurat and Signac. After 20 century, mathematician $M\ddot{o}bius$ invented <$M\ddot{o}bius$ band> which dimension was more 3-dimensional space. While mathematicians were pursuing about infinite dimensional space, artists invented new paradigm, surrealism. That was not real world's images. So, it is called by surrealism. In contemporary arts, a lot of artists has made their works by mathematical material such as Mo?bius band, non-Euclidean space, hypercube, and so on.

  • PDF

BOUNDEDNESS AND CONTINUITY OF SOLUTIONS FOR STOCHASTIC DIFFERENTIAL INCLUSIONS ON INFINITE DIMENSIONAL SPACE

  • Yun, Yong-Sik;Ryu, Sang-Uk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.807-816
    • /
    • 2007
  • For the stochastic differential inclusion on infinite dimensional space of the form $dX_t{\in}\sigma(X_t)dW_t+b(X_t)dt$, where ${\sigma}$, b are set-valued maps, W is an infinite dimensional Hilbert space valued Q-Wiener process, we prove the boundedness and continuity of solutions under the assumption that ${\sigma}$ and b are closed convex set-valued satisfying the Lipschitz property using approximation.

SUFFICIENT CONDITION FOR THE DIFFERENTIABILITY OF THE RIESZ-NÁGY-TAKÁCS SINGULAR FUNCTION

  • Baek, In-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1173-1183
    • /
    • 2017
  • We give some sufficient conditions for the null and infinite derivatives of the $Riesz-N{\acute{a}}gy-Tak{\acute{a}}cs$ (RNT) singular function. Using these conditions, we show that the Hausdorff dimension of the set of the infinite derivative points of the RNT singular function coincides with its packing dimension which is positive and less than 1 while the Hausdorff dimension of the non-differentiability set of the RNT singular function does not coincide with its packing dimension 1.

SOLVING A CLASS OF GENERALIZED SEMI-INFINITE PROGRAMMING VIA AUGMENTED LAGRANGIANS

  • Zhang, Haiyan;Liu, Fang;Wang, Changyu
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.365-374
    • /
    • 2009
  • Under certain conditions, we use augmented Lagrangians to transform a class of generalized semi-infinite min-max problems into common semi-infinite min-max problems, with the same set of local and global solutions. We give two conditions for the transformation. One is a necessary and sufficient condition, the other is a sufficient condition which can be verified easily in practice. From the transformation, we obtain a new first-order optimality condition for this class of generalized semi-infinite min-max problems.

  • PDF

On Generalized Absolute Riesz Summability Factor of Infinite Series

  • Sonker, Smita;Munjal, Alka
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.37-46
    • /
    • 2018
  • The objective of the present manuscript is to obtain a moderated theorem proceeding with absolute Riesz summability ${\mid}{\bar{N}},p_n,{\gamma};{\delta}{\mid}_k$ by applying almost increasing sequence for infinite series. Also, a set of reduced and well-known factor theorems have been obtained under suitable conditions.

SLOW VISCOUS FLOW PAST A CAVITY WITH INFINITE DEPTH

  • Kim, D.W;Kim, S.B;Chu, J.H
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.801-812
    • /
    • 2000
  • Two-dimensional slow viscous flow on infinite half-plane past a perpendicular infinite cavity is considered on the basis of the Stokes approximation. Using complex representation of the two-dimensional Stokes flow, the problem is reduced to solving a set of Fredholm integral equations of the second kind. The streamlines and the pressure and vorticity distribution on the wall are numerically determined.

DERIVATIONS OF MV-ALGEBRAS FROM HYPER MV-ALGEBRAS

  • Hamidi, M.;Borzooei, R.A.
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.643-659
    • /
    • 2016
  • In this paper, we investigate some new results in MV-algebras and (strong) hyper MV-algebras. We show that for any infinite countable set M, we can construct an MV-algebra and a strong hyper MV-algebra on M. Specially, for any infinite totally bounded set, we can construct a strong hyper MV-algebra on it. Then by considering the concept of fundamental relation on hyper MV-algebras, we define the notion of fundamental MV-algebra and prove that any MV-algebra is a fundamental MV-algebra. In practical, we show that any infinite countable MV-algebra is a fundamental MV-algebra of itself, but it is not correct for finite MV-algebras.

ON CANTOR SETS AND PACKING MEASURES

  • WEI, CHUN;WEN, SHENG-YOU
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1737-1751
    • /
    • 2015
  • For every doubling gauge g, we prove that there is a Cantor set of positive finite $H^g$-measure, $P^g$-measure, and $P^g_0$-premeasure. Also, we show that every compact metric space of infinite $P^g_0$-premeasure has a compact countable subset of infinite $P^g_0$-premeasure. In addition, we obtain a class of uniform Cantor sets and prove that, for every set E in this class, there exists a countable set F, with $\bar{F}=E{\cup}F$, and a doubling gauge g such that $E{\cup}F$ has different positive finite $P^g$-measure and $P^g_0$-premeasure.

SOFT SOMEWHERE DENSE SETS ON SOFT TOPOLOGICAL SPACES

  • Al-shami, Tareq M.
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1341-1356
    • /
    • 2018
  • The author devotes this paper to defining a new class of generalized soft open sets, namely soft somewhere dense sets and to investigating its main features. With the help of examples, we illustrate the relationships between soft somewhere dense sets and some celebrated generalizations of soft open sets, and point out that the soft somewhere dense subsets of a soft hyperconnected space coincide with the non-null soft ${\beta}$-open sets. Also, we give an equivalent condition for the soft csdense sets and verify that every soft set is soft somewhere dense or soft cs-dense. We show that a collection of all soft somewhere dense subsets of a strongly soft hyperconnected space forms a soft filter on the universe set, and this collection with a non-null soft set form a soft topology on the universe set as well. Moreover, we derive some important results such as the property of being a soft somewhere dense set is a soft topological property and the finite product of soft somewhere dense sets is soft somewhere dense. In the end, we point out that the number of soft somewhere dense subsets of infinite soft topological space is infinite, and we present some results which associate soft somewhere dense sets with some soft topological concepts such as soft compact spaces and soft subspaces.