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Abstract. The objective of the present manuscript is to obtain a moderated theorem

proceeding with absolute Riesz summability |N̄ , pn, γ; δ|k by applying almost increasing

sequence for infinite series. Also, a set of reduced and well-known factor theorems have

been obtained under suitable conditions.

1. Introduction

A sequence is called bounded variation, i.e., (λn) ∈ BV, if

∞∑
n=1

|∆λn| = |λn − λn+1| <∞.

A positive sequence (gn) is an almost increasing sequence [1] if ∃ a positive
increasing sequence (hn) and two positive constants M and N s.t.

Mhn ≤ gn ≤ Nhn.

Definition 1.1. Let
∞∑

n=0
an be an infinite series with sequence of partial sums (sn)

and is said to be absolute Cesáro summable, if

(1.1)

∞∑
n=1

| un − un−1| <∞,

where un represents the nth sequence to sequence transformation (mean) of (sn).
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Definition 1.2.( [11]) Let tn represent the nth (C, 1) means of the sequence (nan),

then series
∞∑

n=0
an is said to be |C, 1|k summable for k ≥ 1, if

(1.2)
∞∑

n=1

1

n
|tn|k <∞.

Definition 1.3.( [2]) Let (pn) be a sequence of positive numbers such that

(1.3) Pn =
n∑

v=0

pv → ∞, n→ ∞, (P−n = p−n = 0, n ≥ 1),

then the sequence-to-sequence transformation σn defines the (N̄ , pn) mean of series∑
an and given by,

(1.4) σn =
1

Pn

n∑
k=0

pksk, Pn ̸= 0, n ∈ N

and limn→∞σn = s, then the series
∑
an is said to be (N̄ , pn) summable generated

by the sequence of coefficients (pn).
Further, if sequence (σn) is of bounded variation with index k ≥ 1, i.e.,

(1.5)

∞∑
n=1

(
Pn

pn

)k−1

|∆σn−1|k <∞,

then the series
∑
an is said to be absolutely (R, pn)k summable with index k or

|N̄ , pn|k summable.

Definition 1.4.( [3]) The series
∑
an is said to be |N̄ , pn; δ|k summable, if

(1.6)

∞∑
n=1

(
Pn

pn

)δk+k−1

|∆σn−1|k <∞,

and |N̄ , pn, γ; δ|k summable, if

(1.7)
∞∑

n=1

(
Pn

pn

)γ(δk+k−1)

|∆σn−1|k <∞,

where k ≥ 1, δ ≥ 0 and γ is a real number and

(1.8) ∆σn−1 = − pn
PnPn−1

n∑
v=1

Pv−1av, n ≥ 1.

Bor and Seyhan [8] determined the set of sufficient conditions for an infinite se-
ries to be absolute Riesz summable |N̄ , pn; δ|k by using almost increasing sequence.
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In 2002, Bor and Özarslan [7] redesigned the problem of Mazhar [12] under weaker
conditions by using a quasi-power increasing sequence and in 2014, Bor [4] gener-
alized the theorem dealing with a general class of power increasing sequences and
absolute Riesz summability factors of infinite series.

Bor and Özarslan [9,10] have obtained theorems dealing with |N̄ , pn; δ|k summa-
bility factors of infinite series. In [13–15], Özarslan has used definitions of almost
increasing sequence and non-increasing sequence for absolute summability of infinite
series. In 2016, Sonker and Munjal [16] determined a theorem on generalized abso-
lute Cesáro summability with the sufficient conditions for infinite series. Further, in
2017, Sonker and Munjal [17] obtained the sufficient conditions for triple matrices
to be bounded. Bor [5] applied absolute summability (Cesáro and Nörlund) and
established two theorems by using more general conditions for infinite series.

2. Known Result

By using |N̄ , pn; δ|k summability, Bor and Seyhan [8] proved the following theo-
rem with the minimal set of sufficient conditions of an infinite series to be absolute
Riesz summable.

Theorem 2.1. Let (pn) be a sequence of positive numbers such that

(2.1) Pn = O(npn) as n→ ∞.

Let (Xn) be an almost increasing sequence and suppose that there exist sequences
(βn) and (λn) such that

(2.2) |∆λn| ≤ βn,

(2.3) βn → 0 as n→ ∞,

(2.4)

∞∑
n=1

n|∆βn|Xn <∞,

(2.5) |λn|Xn = O(1) as n→ ∞,

(2.6)
∞∑

n=v+1

(
Pn

pn

)δk−1
1

Pn−1
= O

{(
Pv

pv

)δk
1

Pv

}
,

(2.7)
m∑

n=1

(
Pn

pn

)δk−1

|tn|k = O(Xm) as m→ ∞,
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where

(2.8) tn =
1

n+ 1

n∑
v=1

vav,

then the series
∑
anλn is |N̄ , pn; δ|k summable for k ≥ 1 and 0 ≤ δ ≤ 1/k.

3. Main Result

Theorem 3.1. Let (Xn) be an almost increasing sequence and the sequences (βn)
and (λn) be such that conditions (2.2) − (2.5) of Theorem 2.1 are satisfied. If the
following conditions also satisfy,

(3.1)
∞∑

n=v+1

1

Pn−1

(
Pn

pn

)γ(δk+k−1)−k

= O

{
1

Pv

(
Pv

pv

)1−k+γ(δk+k−1)
}
,

(3.2)
m∑

n=1

(
Pn

pn

)γ(δk+k−1)−k

|tn|k = O(Xm),

(3.3)

m∑
n=1

|λn|
n

= O(1),

and

(3.4)
m∑

n=1

1

n

(
Pn

pn

)1−k+γ(δk+k−1)

|tn|k = O(Xm) as m→ ∞

then the series
∑
anλn is |N̄ , pn, γ; δ|k summable for k ≥ 1, 0 ≤ δ ≤ 1/k and γ is

a real number.

4. Lemma

Lemma 4.1.( [6]) Under the conditions on (Xn), (βn) and (λn) as taken in the
statement of the Theorem 3.1, the following conditions hold, where (2.4) is satisfied:

(4.1) nβnXn = O(1) as n→ ∞,

(4.2)
∞∑

n=1

βnXn <∞.
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5. Proof of Theorem 3.1

Let (Tn) denotes the (N̄ , pn) mean of the series
∑
anλn. Then, by definition

and changing the order of summation, we have

(5.1) Tn =
1

Pn

n∑
v=0

pv

v∑
i=0

aiλi =
1

Pn

n∑
v=0

(Pn − Pv−1)avλv.

Then, for n ≥ 1, we have

∆̄Tn = Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1avλv

=
pn

PnPn−1

n∑
v=1

Pv−1λv
v

vav.

By Abel’s transformation, we have

∆̄Tn =
n+ 1

nPn
pntnλn − pn

PnPn−1

n−1∑
v=1

pvtvλv
v + 1

v

+
pn

PnPn−1

n−1∑
v=1

Pvtv∆λv
v + 1

v
+

pn
PnPn−1

n−1∑
v=1

Pvtvλv+1
1

v

= Tn,1 + Tn,2 + Tn,3 + Tn,4.(5.2)

In order to complete the proof of the theorem, it is sufficient to show that

(5.3)

∞∑
n=1

(
Pn

pn

)γ(δk+k−1)

|∆̄Tn|k <∞.

Using Minkowski’s inequality,

|Tn,1 + Tn,2 + Tn,3 + Tn,4|k ≤ 4k
(
|Tn,1|k + |Tn,2|k + |Tn,3|k + |Tn,4|k

)
,

the equation (5.3) reduces to

(5.4)
∞∑

n=1

(
Pn

pn

)γ(δk+k−1)

|Tn,r|k <∞ for r = 1, 2, 3, 4.

Now the L. H. S. of equation (5.4)

m∑
n=1

(
Pn

pn

)γ(δk+k−1)

|Tn,1|k =
m∑

n=1

(
Pn

pn

)γ(δk+k−1)∣∣∣∣n+ 1

nPn
pntnλn

∣∣∣∣k
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= O(1)
m∑

n=1

(
Pn

pn

)γ(δk+k−1)−k

|tn|k|λn|

= O(1)|λm|
m∑

n=1

(
Pn

pn

)γ(δk+k−1)−k

|tn|k

+O(1)
m−1∑
n=1

∆|λn|
n∑

v=1

(
Pv

pv

)γ(δk+k−1)−k

|tv|k

= O(1)|λm|Xm +O(1)
m−1∑
n=1

|∆λn|Xn

= O(1)|λm|Xm +O(1)
m−1∑
n=1

βnXn

= O(1) as m→ ∞,(5.5)

m+1∑
n=2

(
Pn

pn

)γ(δk+k−1)

|Tn,2|k =
m+1∑
n=2

(
Pn

pn

)γ(δk+k−1)∣∣∣∣ pn
PnPn−1

n−1∑
v=1

pvtvλv
v + 1

v

∣∣∣∣k

= O(1)
m+1∑
n=2

1

Pn−1

(
Pn

pn

)γ(δk+k−1)−k

×
n−1∑
v=1

pv|λv||tv|k
(

1

Pn−1

n−1∑
v=1

pv

)k−1

= O(1)
m∑

v=1

pv|λv||tv|k
m+1∑

n=v+1

1

Pn−1

(
Pn

pn

)γ(δk+k−1)−k

= O(1)

m∑
v=1

pv|λv||tv|k
1

Pv

(
Pv

pv

)1−k+γ(δk+k−1)

= O(1)

m∑
v=1

|λv||tv|k
(
Pv

pv

)γ(δk+k−1)−k

= O(1)|λm|
m∑

n=1

(
Pn

pn

)γ(δk+k−1)−k

|tn|k

+O(1)
m−1∑
n=1

∆|λn|
n∑

v=1

(
Pv

pv

)γ(δk+k−1)−k

|tv|k
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= O(1)|λm|Xm +O(1)

m−1∑
n=1

|∆λn|Xn

= O(1)|λm|Xm +O(1)

m−1∑
n=1

βnXn = O(1) as m→ ∞,(5.6)

m+1∑
n=2

(
Pn

pn

)γ(δk+k−1)

|Tn,3|k =
m+1∑
n=2

(
Pn

pn

)γ(δk+k−1)∣∣∣∣ pn
PnPn−1

n−1∑
v=1

Pvtv∆λv
v + 1

v

∣∣∣∣k

= O(1)
m+1∑
n=2

1

Pn−1

(
Pn

pn

)γ(δk+k−1)−k

×
n−1∑
v=1

Pvβv|tv|k
(

1

Pn−1

n−1∑
v=1

Pvβv

)k−1

= O(1)

m∑
v=1

Pvβv|tv|k
m+1∑

n=v+1

1

Pn−1

(
Pn

pn

)γ(δk+k−1)−k

= O(1)
m∑

v=1

Pvβv|tv|k
1

Pv

(
Pv

pv

)1−k+γ(δk+k−1)

= O(1)
m∑

v=1

vβv
1

v

(
Pv

pv

)1−k+γ(δk+k−1)

|tv|k

= O(1)mβm

m∑
v=1

1

v

(
Pv

pv

)1−k+γ(δk+k−1)

|tv|k

+O(1)

m−1∑
v=1

∆(vβv)

v∑
i=1

1

i

(
Pi

pi

)1−k+γ(δk+k−1)

|ti|k

= O(1)mβmXm +O(1)

m−1∑
v=1

|∆(vβv)|Xv

= O(1)mβmXm +O(1)

m−1∑
v=1

vXv|∆βv|+O(1)

m−1∑
v=1

βvXv

= O(1) as m→ ∞,(5.7)

m+1∑
n=2

(
Pn

pn

)γ(δk+k−1)

|Tn,4|k =
m+1∑
n=2

(
Pn

pn

)γ(δk+k−1)∣∣∣∣ pn
PnPn−1

n−1∑
v=1

Pvtvλv+1
1

v

∣∣∣∣k
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= O(1)
m+1∑
n=2

1

Pn−1

(
Pn

pn

)γ(δk+k−1)−k

×
n−1∑
v=1

Pv
|λv+1|
v

|tv|k
(

1

Pn−1

n−1∑
v=1

Pv
|λv+1|
v

)k−1

= O(1)
m∑

v=1

Pv
|λv+1|
v

|tv|k
m+1∑

n=v+1

1

Pn−1

(
Pn

pn

)γ(δk+k−1)−k

= O(1)
m∑

v=1

Pv
|λv+1|
v

|tv|k
1

Pv

(
Pv

pv

)1−k+γ(δk+k−1)

= O(1)

m∑
v=1

|λv+1|
1

v

(
Pv

pv

)1−k+γ(δk+k−1)

|tv|k

= O(1)|λm+1|
m∑

v=1

1

v

(
Pv

pv

)1−k+γ(δk+k−1)

|tv|k

+O(1)
m−1∑
v=1

∆|λv+1|
v∑

i=1

1

i

(
Pi

pi

)1−k+γ(δk+k−1)

|ti|k

= O(1)|λm+1|Xm +O(1)
m−1∑
v=1

∆|λv+1|Xv

= O(1)|λm+1|Xm +
m−1∑
v=1

βv+1Xv+1

= O(1) as m→ ∞,(5.8)

Collecting (5.1) - (5.8), we have

(5.9)

∞∑
n=1

(
Pn

pn

)γ(δk+k−1)

|Tn,r|k <∞ for r = 1, 2, 3, 4.

Hence proof of the theorem is completed. 2

6. Corollaries

Corollary 6.1. ( [6]) Let (Xn) be an almost increasing sequence and the sequences
(βn) and (λn) be such that conditions (2.2) − (2.5) and (3.3) are satisfied. If the
following conditions also satisfy,

(6.1)
m∑

n=1

pn
Pn

|tn|k = O(Xm) as m→ ∞,
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(6.2)
m∑

n=1

1

n
|tn|k = O(Xm) as m→ ∞,

then the series
∑
anλn is |N̄ , pn|k summable for k ≥ 1.

Proof. On putting γ = 1 and δ = 0 in Theorem 3.1, we will get (6.1) and (6.2). We
omit the details as the proof is similar to that of Theorem 3.1 and we use (6.1) and
(6.2) instead of (3.2) and (3.4).

Corollary 6.2. Let (Xn) be an almost increasing sequence and the sequences (βn)
and (λn) be such that conditions (2.2)−(2.5) and (3.3) are satisfied. If the following
conditions also satisfy,

(6.3)
m∑

n=1

pn
Pn

|tn| = O(Xm) as m→ ∞,

(6.4)
m∑

n=1

1

n
|tn| = O(Xm) as m→ ∞,

then the series
∑
anλn is |N̄ , pn| summable .

Proof. On putting γ = 1, δ = 0 and k = 1 in Theorem 3.1, we will get (6.3) and
(6.4). We omit the details as the proof is similar to that of Theorem 3.1 and we use
(6.3) and (6.4) instead of (3.2) and (3.4). 2
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