• 제목/요약/키워드: infiltration behavior

검색결과 154건 처리시간 0.075초

LSI 공법으로 제작된 C/SiC 복합재의 압축거동 평가 (Compressive Fracture Behavior of C/SiC composite fabricated by Liquid Silicon Infiltration)

  • 윤동현;김재훈
    • 한국안전학회지
    • /
    • 제33권1호
    • /
    • pp.1-6
    • /
    • 2018
  • The effects of the fiber direction, specimen size and temperature on the compressive strength of carbon fiber reinforced silicon carbide composite (C/SiC composite) manufactured by liquid silicon infiltration(LSI) is investigated. Tests were conducted in accordance with ASTM C 695 at room temperature and elevated temperatures. Experiments are conducted with two different specimens considering grain direction. With grain (W/G) specimens have a carbon fibers parallel to the load direction, but across grain (A/G) specimens have a perpendicular carbon fibers. To verify the specimen size effect of C/SiC composite, two types of specimens are manufactured. One has a one to two ratio of diameter to height and the other has a one to one ratio. The compressive strength of C/SiC composite increased as temperature rise. As specimens are larger, compressive strength of A/G specimens increased, however compressive strength of W/G decreased.

용융함침법에 의한 반응소결 SiC/SiC 복합재료의 특성 평가 (Property Evaluation of Reaction Sintered SiC/SiC Composites Fabricated by Melt Infiltration Process)

  • 이상필;신윤석
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.205-210
    • /
    • 2007
  • SiC/SiC composites and monolithic SiC materials have been fabricated by the melt infiltration process, through the creation of crystallized SiC phase by the chemical reaction of C and Si. The reinforcing material used in this system was a braided Hi-Nicalon SiC fiber with double interphases of BN and SiC. The microstructures and the mechanical properties of RS-SiC based materials were investigated through means of SEM, TEM, EDS and three point bending test. The matrix morphology of RS-SiS/SiC composites was greatly composed of the SiC phases that the chemical composition of Si and C is different. The TEM analysis showed that the crystallized SiC phases were finely distributed in the matrix region of RS-SiC/SiC composites. RS-SiC/SiC composites also represented a good flexural strength and a high density, accompanying a pseudo failure behavior.

침투류에 의한 암석시료의 함수 저감거동 연구 (I) (A Study on Decreasing Behavior of Strength & Elastic Parameters due to Water Infiltration in Rock Cores (I))

  • 조홍제;문종규;정일수
    • 한국지반공학회논문집
    • /
    • 제28권9호
    • /
    • pp.69-83
    • /
    • 2012
  • 국내에서 출토빈도가 높은 9개 암종을 대상으로 침투에 의한 함수시 강도저감에 대한 연구를 시행하였다. 함수에 의한 강도저감은 암종에 관계없이 암석강도에 지배된다는 사실을 확인하였다. 강도가 약한 암일수록 강도저감 민감도가 예민함을 알 수 있다. 강도에 따라 0.5%의 함수비에 50% 내외의 강도 저감현상이 발생하는 일은 매우 흔하게 관찰된다. 대부분의 암석은 포화함수비의 1/4~1/2의 포화에서 파괴가 일어난다는 사실도 확인할 수 있었다. 함수시 암석강도의 약화는 교질물질의 접착강도 약화와 용탈에 의한 것으로 사료된다.

Effect of degree of compaction & confining stress on instability behavior of unsaturated soil

  • Rasool, Ali Murtaza
    • Geomechanics and Engineering
    • /
    • 제30권3호
    • /
    • pp.219-231
    • /
    • 2022
  • Geotechnical materials such as silt, fine sand, or coarse granular soils may be unstable under undrained shearing or during rainfall infiltration starting an unsaturated state. Some researches are available describing the instability of coarse granular soils in drained or undrained conditions. However, there is a need to investigate the instability mechanism of unsaturated silty soil considering the effect of degree of compaction and net confining stress under partially and fully drained conditions. The specimens in the current study are compacted at 65%, 75%, & 85% degree of compaction, confined at pressures of 60, 80 & 120 kPa, and tested in partially and fully drained conditions. The tests have been performed in two steps. In Step-I, the specimens were sheared in constant water content conditions (a type of partially drained test) to the maximum shear stress. In Step-II, shearing was carried in constant suction conditions (a type of fully undrained test) by keeping shear stress constant. At the start of Step-II, PWP was increased in steps to decrease matric suction (which was then kept constant) and start water infiltration. The test results showed that soil instability is affected much by variation in the degree of compaction and confining stresses. It is also observed that loose and medium dense soils are vulnerable to pre-failure instability i.e., instability occurs before reaching the failure state, whereas, instability in dense soils instigates together with the failure i.e., failure line (FL) and instability line (IL) are found to be unique.

단섬유보강 금속복합재료의 반복적 변형 및 피로특성 (Cyclic Deformation and Fatigue Behavior of Short Fiber Reinforced Metal Matrix Composites)

  • 양유창;송정일;한경섭
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1422-1430
    • /
    • 1995
  • Al6061 alloy reinforced with 15 volume% of Saffil fibers was fabricated by squeeze infiltration method. Uniform distribution of reinforcements and good bondings between reinforcements and matrix alloy were found in the microstructure of composites. Comparing with A16061 matrix alloy, tensile strength and elastic modulus of $Al_{2}$O$_{3}$/Al composites were increased up to 26% and 31%, respectively. Cyclic deformation and fatigue behavior of $Al_{2}$O$_{3}$/Al metal matrix composites were studied. The specimens were cycled using tension-tension(R=0.1) loading and under load controlled fatigue test. Cyclic stress-displacement curve through fatigue test was obtained. Fatigue strength of $Al_{2}$O$_{3}$/Al composites was about 200 MPa, i.e.0.55 of applied stress level(q). During fatigue test, $Al_{2}$O$_{3}$/Al composites displayed cyclic hardening at all applied stress levels. The most of resultant displacement due to permanent plastic deformation occurred in less than the first 5% of fatigue life. Displacement-to-failure of the fatigue test was smaller than that of the tensile test because of accumulative damage by cumulative plastic deformation.

Geotextile로 보강된 제체의 거동 (Behavior of a Geotextile Reinforced Embankment)

  • 신방웅;배우석;이종규;안병철
    • 한국지반환경공학회 논문집
    • /
    • 제2권2호
    • /
    • pp.51-58
    • /
    • 2001
  • 본 연구에서는 보강제체와 무보강제체의 침투거동을 평가하기 위하여 실내모형실험을 실시하였다. 제체침투시험은 사면경사가 1:1.5, 1:2.0이고 수위상승속도가 1.25cm/min, 2.5cm/min, 수위는 15cm, 25cm, 35cm인 조건에서 실시하였다. 모형실험결과 보강재를 사용한 제체의 경우 지하수의 흐름과 상승 때문에 어느 정도의 침하와 수평방향변위가 발생하였으나, 무보강제체에서 나타난 커다란 활동파괴는 발생되지 않았다. 그리고 수위상승속도 변화에 따른 제체의 침투거동분석결과 Geotextile로 보강된 제체가 무보강제체보다 최종침하량이 감소하는 것으로 나타나 Geotextile을 설치한 제체가 비교적 물의 침투력에 대해 안정한 것으로 나타났다.

  • PDF

가감공진단(加減拱辰丹) (WSY-1075)의 접촉성 피부염 유발 모델동물에 대한 개선효과 (The Ameliorative Effects of Gagam-GongJin-dan (WSY-1075) in Contact Dermatitis-induced Animal Model)

  • 황성연;이가위;이승호;김홍준
    • 대한한의학방제학회지
    • /
    • 제21권1호
    • /
    • pp.131-141
    • /
    • 2013
  • Objectives : This study was performed to assess the ameliorative effects of Gagam-GongJin-dan (WSY-1075) composited with Corni Fructus, Angelica gigantis Radix, Lycii Fructus, Ginseng Radix, Cervi parvum Cornu and Cinnamomi Cortex in contact dermatitis animal model. Methods : WSY-1075 was orally administrated the various concentrations (50-400 mg/kg, body weight/day) with one time per day for 10 days from 4 days after DNFB sensitization. We investigated ameliorative effects of WST-1075 on the scratching behavior, skin clinical serverity and inflammatory mediators in 2,4-dinitrofluorobenzene (DNFB)-induced contact dermatitis mice. Results : The orally administration of WSY-1075 (400 mg/kg) inhibited the scratching behavior induced by sensitization and challenge with DNFB. WSY-1075 (200 mg/kg or 400 mg/kg) administration also reduced the skin damage, inflammatory mediators, mast cell infiltration induced by DNFB. Moreover, WSY-1075 (above 200 mg/kg) administration inhibited the serum levels of IgE and IL-4 in DNFB-induced contact dermatitis mice. Conclusions : These results suggest that WSY-1075 administration (200 mg/kg or 400 mg/kg) has the ameliorative effects on the scratching behavior, the clinical signs, mast cell infiltration and inflammatory mediators in DNFB-induced contact dermatitis animal model mice.

용탕가압침투 AS52 Mg/Al18B4O33w 복합재료의 크리프 특성 (Creep Properties of Squeeze Infiltrated AS52 Mg/Al18B4O33w Composite)

  • 최계원;박용하;박봉규;박용호;박익민;조경목
    • 대한금속재료학회지
    • /
    • 제46권7호
    • /
    • pp.412-419
    • /
    • 2008
  • Creep behavior of the squeeze infiltrated AS52 Mg matrix composites reinforced with 15 vol% of aluminum borate whiskers($Al_{18}B_4O_{33}w$) fabricated squeeze infiltration method was investigated. Microstructure of the composites was observed as uniformly distributed reinforcement in the matrix without any particular defects of casting pores etc.. Creep test was carried out at the temperature of 150 and $200^{\circ}C$ under the applied stress range of 60~120 MPa. The creep resistance of the composite was significantly improved comparing with the unreinforced AS52 Mg alloy. The creep behavior of composites might be interpreted with the substructure invariant model successfully for the composite. Threshold stress of the composite exist for the creep deformation of the composite. The analysis of the creep behavior of the composite with threshold stress indicated that creep deformation was controlled by the lattice diffusion process of AS52 Mg matrix at given effective stresses and temperatures. Activation energy was also calculated to check lattice diffusion controlled creep behavior of the composite.