Browse > Article

Creep Properties of Squeeze Infiltrated AS52 Mg/Al18B4O33w Composite  

Choi, Kye-Won (Department of Materials Science and Engineering, Pusan National University)
Park, Yong-Ha (Department of Materials Science and Engineering, Pusan National University)
Park, Bong-Gyu (Department of Materials Science and Engineering, Pusan National University)
Park, Yong-Ho (Department of Materials Science and Engineering, Pusan National University)
Park, Ik-Min (Department of Materials Science and Engineering, Pusan National University)
Cho, Kyung-Mox (Department of Materials Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Metals and Materials / v.46, no.7, 2008 , pp. 412-419 More about this Journal
Abstract
Creep behavior of the squeeze infiltrated AS52 Mg matrix composites reinforced with 15 vol% of aluminum borate whiskers($Al_{18}B_4O_{33}w$) fabricated squeeze infiltration method was investigated. Microstructure of the composites was observed as uniformly distributed reinforcement in the matrix without any particular defects of casting pores etc.. Creep test was carried out at the temperature of 150 and $200^{\circ}C$ under the applied stress range of 60~120 MPa. The creep resistance of the composite was significantly improved comparing with the unreinforced AS52 Mg alloy. The creep behavior of composites might be interpreted with the substructure invariant model successfully for the composite. Threshold stress of the composite exist for the creep deformation of the composite. The analysis of the creep behavior of the composite with threshold stress indicated that creep deformation was controlled by the lattice diffusion process of AS52 Mg matrix at given effective stresses and temperatures. Activation energy was also calculated to check lattice diffusion controlled creep behavior of the composite.
Keywords
AS52 Mg alloy; Aluminum borate whisker; composites; squeeze infiltration method; creep test; substructure invariant model; threshold stress; stress exponent; activation energy; lattice diffusion control creep;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 B, L. Mordike, T. Ebert, Mater. Sci. Eng. A302, 37(2001)
2 G. Y. Yuan, Z. L. Liu, Meter. Letters 56, 53 (2002)   DOI   ScienceOn
3 Y. Shintari, Y. Okochi, M. Sugiyama, Proc. 5th International SAMPLE Symposium, p. 339, Japan (1997)
4 N. Chawla, K. K. Chawla, Metal Metrix Composites, Springer p.305 (2006)
5 S. S. Vagarali, T. G. Langdon, Acta Metall. 29, 1969 (1981)   DOI   ScienceOn
6 Y. Li, G. Langdon. Acta Mater. 45, 4797 (1997)   DOI   ScienceOn
7 F. A. Mohamed, T. G. Langdon, Acta. Metall. 22, 779 (1974)   DOI   ScienceOn
8 I. J. Polmear, Mater. Sci. Tech. 10, 1 (1994)   DOI   ScienceOn
9 Y. Li, T. G. Langdon, Acta. Mater. 46, 3937(1998)   DOI   ScienceOn
10 F.A. Mohamed, K. T. Park, E. J. Lavernia, Mater. Sci. Eng. A150, 21 (1992)
11 O. D. Sherby, R. H. Klundt, A. K. Miller, Metall. Trans. 8, 843 (1997)
12 A. Stalmann, W. Sebastian, H. Friedrich, S. Schumann, Adv. Eng. Mater. 3, 969 (2001)   DOI   ScienceOn
13 I. J. Polmear, Light Alloys, Third ed., Anold, a division of Hodder Headline PLC, London (1995)
14 S. Ugadhar, M. Gupta, S. K. Sinha, Compo. Struc. 72, 256 (2006)
15 S. S. Vagarali, T. G. Langdon, Acta Metall. 30, 1157 (1982)   DOI   ScienceOn
16 K. T. Park, E. J. Lavernia, F. A. Mohamed, Acta Met. Mat. 38, 2149 (1990)   DOI   ScienceOn
17 H. Friedrich, S. Schumann, Mater. Sci. Forum. 419, 51 (2003)
18 B. Jing, S. Yangshan, Meter. Sci. Eng. A419, 181 (2006)