• Title/Summary/Keyword: inference rate

Search Result 208, Processing Time 0.029 seconds

Object Recognition Using Neuro-Fuzzy Inference System (뉴로-퍼지 추론 시스템을 이용한 물체인식)

  • 김형근;최갑석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.5
    • /
    • pp.482-494
    • /
    • 1992
  • In this paper, the neuro-fuzzy inferene system for the effective object recognition is studied. The proposed neuro-fuzzy inference system combines learning capability of neural network with inference process of fuzzy theory, and the system executes the fuzzy inference by neural network automatically. The proposed system consists of the antecedence neural network, the consequent neural network, and the fuzzy operational part, For dissolving the ambiguity of recognition due to input variance in the neuro-fuzzy inference system, the antecedence’s fuzzy proposition of the inference rules are automatically produced by error back propagation learining rule. Therefore, when the fuzzy inference is made, the shape of membership functions os adaptively modified according to the variation. The antecedence neural netwerk constructs a separated MNN(Model Classification Neural Network)and LNN(Line segment Classification Neural Networks)for dissolving the degradation of recognition rate. The antecedence neural network can overcome the limitation of boundary decisoion characteristics of nrural network due to the similarity of extracted features. The increased recognition rate is gained by the consequent neural network which is designed to learn inference rules for the effective system output.

  • PDF

Determination of dosing rate for water treatment using fusion of genetic algorithms and fuzzy inference system (유전알고리즘과 퍼지추론시스템의 합성을 이용한 정수처리공정의 약품주입률 결정)

  • 김용열;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.952-955
    • /
    • 1996
  • It is difficult to determine the feeding rate of coagulant in water treatment process, due to nonlinearity, multivariables and slow response characteristics etc. To deal with this difficulty, the fusion of genetic algorithms and fuzzy inference system was used in determining of feeding rate of coagulant. The genetic algorithms are excellently robust in complex operation problems, since it uses randomized operators and searches for the best chromosome without auxiliary information from a population consists of codings of parameter set. To apply this algorithms, we made the look up table and membership function from the actual operation data of water treatment process. We determined optimum dosages of coagulant (PAC, LAS etc.) by the fuzzy operation, and compared it with the feeding rate of the actual operation data.

  • PDF

Vocabulary Acquisition of Korean Learners for Academic Purposes -Focusing on the Effects of Instruction Introductory Methods of Context Inference and Activation of Background Knowledge (학문목적 한국어 학습자의 어휘 습득 연구 -문맥 추론과 배경지식 활성화를 통한 수업 도입을 중심으로-)

  • Lee, MinWoo
    • Journal of Korean language education
    • /
    • v.29 no.4
    • /
    • pp.93-112
    • /
    • 2018
  • The purpose of this study is to deal with vocabulary in KFL. As a result of this study, learners learned vocabulary on average 43 points through contextual inference and introduction of the class to activate background knowledge. In particular, the implicit method showed the highest learning rate of 52 points, and the thematic method had a 41 point-learning rate. In contrast, the semantic method was the lowest with a 25 point-learning rate. There was no significant difference in the improvement rate of upper vocabulary learners, but in the case of the lower learner, there was significant difference in the improvement rate. The difference was not significant in the post-test relative gain rate of upper learners, but there was significant in lower learners. In the delayed test relative gain rate, the difference was significant in all groups. There was correlation between vocabulary difficulty and score, but there was no correlation with the thematic method. And there was no correlation between vocabulary difficulty, improvement rate and relative gain rate in all three classes. However, content understanding, lexical grade, improvement rate, and relative gain rate showed a significant correlation.

Bayesian Inference for Predicting the Default Rate Using the Power Prior

  • Kim, Seong-W.;Son, Young-Sook;Choi, Sang-A
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.685-699
    • /
    • 2006
  • Commercial banks and other related areas have developed internal models to better quantify their financial risks. Since an appropriate credit risk model plays a very important role in the risk management at financial institutions, it needs more accurate model which forecasts the credit losses, and statistical inference on that model is required. In this paper, we propose a new method for estimating a default rate. It is a Bayesian approach using the power prior which allows for incorporating of historical data to estimate the default rate. Inference on current data could be more reliable if there exist similar data based on previous studies. Ibrahim and Chen (2000) utilize these data to characterize the power prior. It allows for incorporating of historical data to estimate the parameters in the models. We demonstrate our methodologies with a real data set regarding SOHO data and also perform a simulation study.

Fault Diagnosis in Gas Turbine Engine Using Fuzzy Inference Logic (퍼지 로직 시스템을 이용한 항공기 가스터빈 엔진 오류 검출에 대한 연구)

  • Mo, Eun-Jong;Jie, Min-Seok;Kim, Chin-Su;Lee, Kang-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.49-53
    • /
    • 2008
  • A fuzzy inference logic system is proposed for gas turbine engine fault isolation. The gas path measurements used for fault isolation are exhaust gas temperature, low and high rotor speed, and fuel flow. The fuzzy inference logic uses rules developed from a model of performance influence coefficients to isolate engine faults while accounting for uncertainty in gas path measurements. Inputs to the fuzzy inference logic system are measurement deviations of gas path parameters which are transferred directly from the ECM(Engine Control Monitoring) program and outputs are engine module faults. The proposed fuzzy inference logic system is tested using simulated data developed from the ECM trend plot reports and the results show that the proposed fuzzy inference logic system isolates module faults with high accuracy rate in the environment of high level of uncertainty.

The fuzzy transmission rate control method for the fairness bandwidty allocation of ABR servce in ATM networks (AYM망에서 ABR 서비스의 공정 대역폭 할당을 위한 퍼지 전송률 제어 기법)

  • 유재택;김용우;김영한;이광형
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.939-948
    • /
    • 1997
  • In this paper, we propose the new rate-based transmission rates control algorithm that allocates the fair band-width for ABR service in ATM network. In the traditional ABR service, bandwidth is allocated with constant rate increment or decrement, but in the proposed algorithm, it is allocated fairly to the connected calls by the fuzzy inference of the available bandwidth. The fuzzy inference uses buffer state and the buffer variant rate as the input variables, and uses the total transmission rate as a output variable. This inference a bandwidth is fairly distributed over all ABR calls in service. By simmulation, we showed that the proposed method improved 0.17% in link effectiveness when RIF, RDF is 1/4, 38.6% when RIF, RDF 1/16, and 82.4% when RIF, RDF 1/32 than that of the traditional EFPCA.

  • PDF

Reliability and ratio in exponentiated complementary power function distribution

  • Moon, Yeung-Gil;Lee, Chang-Soo;Ryu, Se-Gi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.955-960
    • /
    • 2009
  • As we shall dene an exponentiated complementary power function distribution, we shall consider moments, hazard rate, and inference for parameter in the distribution. And we shall consider an inference of the reliability and distributions for the quotient and the ratio in two independent exponentiated complementary power function random variables.

  • PDF

Japanese Vowel Sound Classification Using Fuzzy Inference System

  • Phitakwinai, Suwannee;Sawada, Hideyuki;Auephanwiriyakul, Sansanee;Theera-Umpon, Nipon
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • An automatic speech recognition system is one of the popular research problems. There are many research groups working in this field for different language including Japanese. Japanese vowel recognition is one of important parts in the Japanese speech recognition system. The vowel classification system with the Mamdani fuzzy inference system was developed in this research. We tested our system on the blind test data set collected from one male native Japanese speaker and four male non-native Japanese speakers. All subjects in the blind test data set were not the same subjects in the training data set. We found out that the classification rate from the training data set is 95.0 %. In the speaker-independent experiments, the classification rate from the native speaker is around 70.0 %, whereas that from the non-native speakers is around 80.5 %.

Robust inference with order constraint in microarray study

  • Kang, Joonsung
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.559-568
    • /
    • 2018
  • Gene classification can involve complex order-restricted inference. Examining gene expression pattern across groups with order-restriction makes standard statistical inference ineffective and thus, requires different methods. For this problem, Roy's union-intersection principle has some merit. The M-estimator adjusting for outlier arrays in a microarray study produces a robust test statistic with distribution-insensitive clustering of genes. The M-estimator in conjunction with a union-intersection principle provides a nonstandard robust procedure. By exact permutation distribution theory, a conditionally distribution-free test based on the proposed test statistic generates corresponding p-values in a small sample size setup. We apply a false discovery rate (FDR) as a multiple testing procedure to p-values in simulated data and real microarray data. FDR procedure for proposed test statistics controls the FDR at all levels of ${\alpha}$ and ${\pi}_0$ (the proportion of true null); however, the FDR procedure for test statistics based upon normal theory (ANOVA) fails to control FDR.

Bayesian model updating for the corrosion fatigue crack growth rate of Ni-base alloy X-750

  • Yoon, Jae Young;Lee, Tae Hyun;Ryu, Kyung Ha;Kim, Yong Jin;Kim, Sung Hyun;Park, Jong Won
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.304-313
    • /
    • 2021
  • Nickel base Alloy X-750, which is used as fastener parts in light-water reactor (LWR), has experienced many failures by environmentally assisted cracking (EAC). In order to improve the reliability of passive components for nuclear power plants (NPP's), it is necessary to study the failure mechanism and to predict crack growth behavior by developing a probabilistic failure model. In this study, The Bayesian inference was employed to reduce the uncertainties contained in EAC modeling parameters that have been established from experiments with Alloy X-750. Corrosion fatigue crack growth rate model (FCGR) was developed by fitting into Paris' Law of measured data from the several fatigue tests conducted either in constant load or constant ΔK mode. These parameters characterizing the corrosion fatigue crack growth behavior of X-750 were successfully updated to reduce the uncertainty in the model by using the Bayesian inference method. It is demonstrated that probabilistic failure models for passive components can be developed by updating a laboratory model with field-inspection data, when crack growth rates (CGRs) are low and multiple inspections can be made prior to the component failure.