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Abstract

As we shall define an exponentiated complementary power function distribution, we
shall consider moments, hazard rate, and inference for parameter in the distribution.
And we shall consider an inference of the reliability and distributions for the quotient
and the ratio in two independent exponentiated complementary power function random
variables.
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1. Introduction

An example of some importance is the use of a power function distribution to fit the
distribution of certain likelihood ratios in statistical tests. If the likelihood ratio is based
on n-independent distributed random variables, it’s often found that a useful good fit can
be obtained by supporting (likelihoodratio)*/™ to have a power function distribution. For
independent random variables X and Y, and a real number ¢, the probability P(X < ¢Y)
is as given in Woo (2006): (i) it is the reliability when ¢ =1, (ii) it is distribution of ratio
X/(X+Y) when c=t/(1—1t) for 0< ¢ <1.

Rider (1964) derived distributions of product and quotient of maximum values in samples
from a population with a power function distribution and studied problems of estimating its
parameter. Moments of order statistics for a power function distribution were considered by
Lewin (1972), and Arnold and Press (1983) studied Bayes estimation for the scale parameter
of the Pareto distribution using power function prior distribution. Moothathu (1984) studied
characterizations of Lorenz curve in the power function distribution. Bowman and Shenton
(1998) studied the ratio of the gamma variables with the unit shape parameter. Woo (2008)
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studied reliability and ratio in two independent different variates. Moon and Lee (2009)
considered an inference on the reliability in two independent gamma random variables.

We define an exponentiated complementary power function distribution based on defini-
tions of Gupta and Kundu (2001), and we then consider k-th moment, hazard rate, and
inference for parameter in the exponentiated complementary power function distribution.
And we shall consider an inference of the reliability P(Y < X) and distributions of the
quotient X/Y and the ratio X/(X +Y) when X and Y are independent exponentiated
complementary power function random variables.

2. Exponentiated complementary power function

Let a continuous random variable X have the density F'(z) = f(x), whose the cdf F(x)
is strictly increasing function and its support is (0,1).
Assume that random variable Z has a cdf

G)=[F ') 0<z<1, a>0. (2.1)

Then the random variable Z is called to have an exponentiated complementary distribution
in Gupta and Kundu (2001).
For given power function random variable

X~ flz;0)=0-2"1, 0<z<1,1<6,

especially if § = 1, the density is a uniform over (0, 1). From definition (2.1) and a power
function distribution in Malik (1967), an exponentiated complementary power function ran-
dom variable Z has the cdf and pdf :

Glz) =2z 0<uz<]1,
and
G'(x) = g(x) = az®?71/0, 0<z <1, a>60>1 (2.2)
The k-th moment of Z is given by

!
BE(ZF=——— k=1,2,--
( ) o+ 0 K ka 9 4y
and from formula 3.383(1) in Gradshteyn and Ryzhik (1965), the moment generating func-
tion my(t) of Z is obtained as:

mz(t) = F(a/0;1+ a/6;t),

where F'(a;b;t) is a confluent hypergeometric function.

From a property of increasing (or decreasing) hazard rate in Saunders (2007), we obtain
the following:

Fact 2.1. The density (2.2) has increasing hazard rate when « > 0, but it has decreasing
hazard rate when o < 6.
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3. Estimations

3.1. Estimation of parameter

Let X1, X5,...,X,, be a random sample from the density (2.2). Let’s first introduce
well-known results as follows:

Lemma 1. (a) — )", InX; follows a gamma distribution with the shape parameter m
and the scale parameter 0/ca.
(b) If Y follows a gamma distribution with shape parameter p and the scale parameter b,
then E(1/Y*) =T(p —k)/(T'(p) - b¥), if p > k, where I'(a) is the gamma function.
For given power function distribution (i.e. 6 is known), MLE & of « is given as:

a:mﬂ/(fZlnXi). (3.1)

From Lemma 1, mean and variance of MLE @ of « are obtained by:
E(@) = ma/(m — 1)
and
Var(@) = m?*a?/[(m —1)*(m —2)], m > 2. (3.2)

From (3.2), an unbiased estimator & of « is defined by:

a=(m-10/(->_ InX;). (3.3)
i=1

From Lemma 1, variance of an unbiased estimator a of « is given as:
Var(@) = a?/(m —2), m > 2. (3.4)

From variances of estimators & and & in (3.2) and (3.4), we obtain the following:
Fact 3.1. The unbiased estimator « is more efficient in a sense of MSE than the MLE a.

3.2. Estimation of reliability

For given power function distribution (i.e. 6 is known), we consider estimation of relia-
bility P(Y < X) when X and Y are exponentiated complementary power function random
variables each with parameters o, and «,, respectively.

Reliability P(Y < X) is obtained by:

1 1
=PY <X)= - = o 3.5
y ( ) TFajo. 17 n=ay/a (3.5)

which reliability is a monotone function of 7.
Because v is a monotone function of 7, inference on v is equivalent to inference on 7 (see
McCool, 1991). We then consider inference on 7.
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Assume X; Xo,...,XpandY; Ys ..., Y, be two independent random samples from the
density (2.2) each with parameters o, and o, respectively. Then

Qy =0m/(— > InX;), @, =0n/(=) InY;).
i=1 i=1

And hence, MLE 7 of 1 is ) = @ / Q.
From Lemma 1, we obtain mean and variance of MLE 7:

n n?(m+n—1)
Fact 3.2. E(f)=—— d Var(n) = n? 2.
ac (77) n— 177 an ar(’?) m(n — 1)2(7'L — 2)»7 , N>

From unbiased estimator (3.3), we define another estimator 7 of 7 as:

7~7 = ay/ Qg

From Lemma 1, we obtain the following mean and variance of 7:

Fact 3.3. E()) = — 4 Var( = Tormnom

act 3.3. (n)_m—ln an ar(n)_(m—l)Q(n—Z)n )

From Facts 3.2 and 3.3, we obtain the following:

Fact 3.4. (a) When m>n, the proposed estimator 77 is more efficient in a sense of mean
squared error than MLE 7, and vice versa when n>m.
(b) When m=n, the proposed estimator 77 and MLE 7} have the same mean squared errors.
Next, we consider to estimate a confidence interval of 7.
We define the following random variables:

E—ilnXi, E—ilnY;.
i=1 i=1

By formula 3.381(4) in Gradshteyn and Ryzhik (1965) and the quotient density of two
independent random variables in Rohatgi (1976), the pdf of U(X,Y) = Z/W is obtained
by the following:

For U = U(X,Y) = (=Y, InXy)/(—> i, nY;), X = (X1,...,X,,) and ¥ =
(Y1,...,Y,),

m>1 n>2.

1

u
fo(u) = =——u™ 114+ )" 4> 0.
) B(m,n)n™ ( n)

Fact 3.5. Let B =U/(n+ U). Then B follows a beta distribution with parameter m
and n.
Based on pivot quantity B in Fact 3.5, for given 0 < p < 1, an (1-p)100% confidence interval

of n is given by:

ml— bl_p/g/\ ml— bp/g

, n), 3.6
W b n by, 1) (3.6)

where for 0 < p < 1, there exists 0 < b, < 1 which

/bp ! tm (1 — )" at
p= Y. - :
0 B(m7 ’I’L)
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From Fact 3.2, the expected length of the confidence interval of 7 is given by

m 1 1
n—="10, by

Next, we want to test the hypothesis: Ho; o = oy against Hij o, # ay.
If the null hypothesis is true, o, = o, = ap, then MLE of «y is given as:

ag =0(m+n)/(= > InX; =Y InY;).
=1 =1

From the likelihood ratio test in Rohatgi (1976),

m-+n m+n 1 1

Alz,y) = ( - )"( - )n(1+1/U)m(1+U)n

<c & U<c orU>co.

If Hy is true, then from Fact 3.5 and an upper limit of integral (3.2), since By = U/(1 4 U)
is a monotone function of U, “ U < ¢ or U > ¢g ” is equivalent to U/(1 + U) <
bpj2 or U/(14U) > b1_p/2. And hence we obtain the following:

Fact 3.6. For a level 0 < p < 1, the test

1, 1fU/(1+U) <bp/2 or U/(1+U) >b1,p/2

0, else

p(z,y) = {
is the likelihood ratio size p for testing Ho; o, = vy against Hi; oy # oy

4. Distribution of ratio X/(X +7Y)

For given «, (o > 6 > 1), let X and Y be two independent exponentiated complementary
power function random variables each with parameters 6, and 6,, respectively. Then the
density of quotient W =Y /X is given by

Y

/01 if0<w<1
0I+9yw , i w

«
0, + 0,

fw(w) =

w=/0==1if g > 1.

Hence we obtain the density of ratio R = X/(X +Y):

a (1—r)e/0-1

O0p +0, ro/fu+l ,if§<r<1

)=
fR( ) a 7'04/'91,_1 - B 1
6, 16, (1—rypo/tit DU STS5

Especially if 6, = 6,, the density (4.1) is symmetric about 1/2.
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From the density (4.1) and binomial expansion, we obtain k-th moment of ratio R: For k=1,
2,3, ..,

a > (=Fk); Oy 0z

- - + -
91—&-9%2:% jlola+ji-0, a+(k+i) 0,

E(RF) =

(4.1)

where (b); =b(b—1)(b—2)...(b—j+1)and (b)o =1.
From k-th moment (4.2), Table 4.1 provides approximate numerical values of mean and
variance of ratio when o =2, 4, 8, 10 and (6, = 1,6, = 2).

Table 4.1 Mean and variance of ratio R = X/(X +Y') when 0, = 1,0, = 2.

a 2 4 8 10
mean 0.59089  0.55556  0.53016  0.52443
variance  0.03727 0.01431 0.00440  0.00290

From Table 4.1, we observe the following when the density (2.2) has parameters « and 6 :

Fact 4.1. For given a (o > 6 > 1), let X and Y be two independent exponentiated com-
plementary power function random variables each with parameters ¢, and 6,, respectively.
Then variance of ratio is decreasing when « is increasing, where o =2, 4, 8, 10 and 6, = 1
and 0, = 2.
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