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Bayesian Inference for Predicting the Default Rate
Using the Power Prior
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Abstract

Commercial banks and other related areas have developed internal models to
better quantify their financial risks. Since an appropriate credit risk model plays a
very important role in the risk management at financial institutions, it needs more
accurate model which forecasts the credit losses, and statistical inference on that
model is required. In this paper, we propose a new method for estimating a
default rate. It is a Bayesian approach using the power prior which allows for
incorporating of historical data to estimate the default rate. Inference on current
data could be more reliable if there exist similar data based on previous studies.
Ibrahim and Chen (2000) utilize these data to characterize the power prior. It
allows for incorporating of historical data to estimate the parameters in the
models. We demonstrate our methodologies with a real data set regarding SOHO
data and also perform a simulation study.

Keywords : Default rate; Bayesian approach; power prior; AR(1) model; historical
data; Gibbs sampling.

1. Introduction

Since early 1990s there has been a considerable amount of work to develop
sophisticated systems measuring credit risks, which are arisen from diverse areas
such as banking, finance, insurance, and other related fields. These systems or
models are intended to quantify and aggregate resulting credit risks. In particular,
much efforts have been well recognized by bank regulators. The Basel Capital
Accord formally encourages banks to have their own internal risk models. The
ultimate purpose of credit risk models is to forecast the probability of losses that
may occur in banks’ credit portfolios. Thus an appropriate model should be built
in accordance with being conceptually sound, easily applicable, and empirically
feasible.
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Credit scoring is a procedure to measure the degree of the credit explicitly
based on accumulated customers data. Since it relies upon real data through
statistical methodologies, it is usually more reliable than subjective or judgmental
methods. The data initially classifies into two groups, which are the good and the
bad groups. In retail lending, most of banks have their own credit scoring system
(CSS) to evaluate the individual credit, and thus, loan processes are appropriately
executed. In commercial lending, a similar procedure should be performed to
evaluate corporate credit risks. This system is often called the credit rating
system (CRS). These systems can accommodate banks’ competitiveness resulting
in the increase of performing customers with high profitability.

When you build credit evaluation models, the first step is ’'data gathering’. We
quite often see that good samples are a lot larger than bad samples. However, in
practice, we take both good and bad samples with equal sizes. If all the good
samples are used, the resulting entire samples depend too much upon the
characteristics of the good samples (cf. Thomas et al, 2002; Caouette et al, 1998).
On the contrary, the equal sample size should increase predictability for both the
goods and bads simultaneously. Once the data are collected, several statistical
methodologies can be applied to compute the default rate of each individual. These
methodologies include the logistic regression, Chaid analysis, neural networks, and
etc. It is not a major issue in this article to explore modelling techniques, and
thus we do not mention them in detail. The next step is to create the risk band
and calculate the default probability in each risk band. Because equal sample sizes
are used, we need to adjust the band probabilities by estimating the 'mean default
rate’ for the underlying population.

In recent years, default rate models in portfolio contexts have been studied and
a decent amount of literature regarding this problem has been published till now.
An initial attempt was done by Fons (1991) who formulates a statistical model to
forecast aggregated issuer-based default rates. In this study, Fons found that
about 52% of the variation in historical default rates could be explained using only
two factors, credit quality and the state of the economy. Carey (1998) examined
two characteristics of private debt portfolioc credit risk loss rate distributions
empirically. Gordy (2000) compared risk measures calculated for the same portfolio
but using different models. Nickel, Perraudin and Varotto (2001) predicted the
credit risk of a large portfolio of dollar denominated eurobonds using rating—based
and equity-based approaches. Emmer and Tasche (2003) developed approximate
formula to calculate credit risks.

It is well known that default rates are dependent upon time. In this article, we
consider a first order autoregressive model (AR(1)),
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ro—r=¢r,_,—r)+e, (1)
where |gl< 1, ¢, follows a Gaussian white noise with mean 0 and variance 7, and
t is an observed time. To estimate the mean default rate r we propose a
Bayesian approach using the power prior and it is compared with the conditional
least square (CLS) estimation from a frequentist perspective.

In the Bayesian approach it is a major issue to specify the priors for the
parameters in the model. For Bayesian analysis, a specified prior distribution is
essentially required. However, it is not easy to specify a meaningful prior
distribution for the parameters in each model since it is requiring contextual
interpretations of a large number of parameters. Thus it needs to look for some
useful and automated specifications. Reference priors can be used to address it.
However, they may result in improper posterior probabilities. Recently, Berger and
Pericchi (1996) have proposed the intrinsic prior which provides a comprehensive
solution to ambiguous problems. In Bayesian analysis, Jeffreys’'s prior (Jeffreys,
1946) is commonly used for reference priors. However, for certain models it is not
appropriate because of computation and analytic problems (cf. Kim and Ibrahim,
2000). In addition, reference priors do not reflect any real prior information that
one may need for a specific situation. These cases are often encountered when the
current study is similar to the previous studies in measuring the response and
covariates. The data from past studies may be used for real prior information for
the current study when the current study is similar to the previous studies in
measuring the response and covariates. However, in the case of using data from
a previous study as a prior information, it needs a caution that one should not use
them blindly or in a semiautomatic fashion when constructing informative priors,
because the information contained in them may be inappropriate for the research
problem at hand. The data arising from previous studies are referred as ‘historical
data’ (cf. Ibrahim and Chen, 2000).

A useful informative prior on historical data is the power prior of Ibrahim and
Chen (2000) because it inherently automates the informative prior specification for
every conceivable models in the model space. The power prior is defined by the
likelihood function based on the historical data, raised to a power g, Wwhere
ay(0 < ay < 1) is a scalar parameter that controls the influence of the historical
data on the current study.

The initial idea of the power prior can be traced to Diaconis and Ylvisker (1979)
and Morris (1983), where they studied conjugate priors for exponential families.
However, these two authors only considered the situation in which the power g
is a fixed constant. When q, is random, the formulation becomes quite complicated

and theoretical properties of the powers remain largely unknown. Chen, Ibrahim
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and Shao (1999) have provided the theoretical properties of power priors for the
class of various models.

This paper organized as follows. In section 2 the overview of the power prior is
presented. In section 3 we propose the AR(1) model with the power prior. Section
4 contains two numerical exarmnples, involving simulated and real datasets. We
finish this paper with a brief discussion in section 5.

2. The power prior

Let D denote the data from the current study, and let Z{(6 | D) be the
likelihood function of the current study, where 6 is a vector of interesting
parameters. Suppose that historical data D, from a similar experiment are
available. Further, let 7,( | - ) denote the prior distribution for # before the
historical data D, are observed. We often call n,(# | - ) the initial prior
distribution for #. From Ibrahim and Chen (2000) the joint power prior distribution
is characterized as

70 | Dy,ay)oc [L(O | D) "m0 1 cy), (2)
where ¢, is a specified hyperparameter for the initial prior, and a, is a prior

parameter that brings up the weight for the historical data relative to the
likelihood of the current study. The parameter a, can be interpreted as a precision

parameter. It is reasonable that the range of g, is restricted to be between 0 and
1. The parameter g, controls the heaviness of the tails of the prior for #. As q,
becomes smaller, the tails of (2) gets heavier. When we fix a, =1, (2) can be the
posterior distribution of # from the previous study. When a, =0, the prior
distribution does not depend on the historical data and thus (2) can be a usual
prior. An important role of g, is controlling the influence of the historical data on
the current data. Such control may be important when the sample sizes of two
studies are quite different or there is heterogeneity between the previous and the
current study. For example, it is the case that a financial crisis has occurred in
the past year.

The hierarchical power prior is completed by specifying a prior distribution for
ay. A natural and common choice of prior distribution for a, is a beta distribution.
Then the joint power prior becomes

78,00 | Dy)oc (L | D)) "me @ | co)mlag | vy), (3)

where 7 (agly,)ec ag““(l—a(,)’\"“ and ~, = (8, \) are the specified hyperparameter

vector. A beta prior for q, appears to be the most natural to use and leads to the
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most natural elicitation scheme. The prior in (3) does not have a closed form in
general. However, a desirable feature of (3) is that it creates heavier tails for the
marginal prior of @ than (2). Thus (3) is more flexible in weighting the historical
data. If a small prior weight is desired, we choose the prior mean of g,

fto, =80/ (8 +Xy) to be small. Otherwise, g, > 0.5 may be suitable. The joint
power prior in (3) can be generalized when multiple historical datasets are
available. Suppose that there are M historical datasets, and let Dy, = (ng;, yor Xok)
be the historical data based on the kth study, and let D= (D,;,",Dyy,). In this
case, it is desirable to define a precision parameter a,, for each historical study
and take the distribution for a,.'s to be iid. beta distribution with parameters
(6p.X)s for k=1, M. Let a,= (ay;,",a0,), then the joint power prior in (3) can
be generalized as

M
7(8,a, | Dy)oc H[L(O | Dy )7 (agy, | 70)}71'0(0 I cp).

k=1
3. The AR(1) model with the power prior

Suppose that we have actual default rates observed in equally spaced intervals.
It could be the case that the high default interval is more likely to be followed by
another high default interval. So we propose an AR(1) model for estimating 'mean
default rate’. In (1) let r denote the underlying mean default rate (unit: 9).
Suppose we have a set of default rates calculated by n intervals, denoted by
r=(ry,~,r,). Let 8=(r,¢,7) be the model parameters. Then the likelihood

function is

L@ | r)= (27r7-)—”/2exp{— %E[n —r—¢(r,_, —)]*t. (4)
=2

Suppose that we have historical data from a past year, calculated by n,
intervals. We denote this by r= (r;,---,r:l“). Then the hierarchical power prior is
specified as

(0,00 | 7 )oc [L(O | 7)) "m, (0)7(ay)

We specify a beta prior for n(a,) with hyperparameters (8,,),), a truncated
normal for r, denoted by TN (NUaUS) with 0 < r < co , and uniform for ¢, denoted
by U(—1,1). Meanwhile, we give an inverse gamma for 7, denoted by IG(vy4n,)-
Under the assumption of independent priori, the joint power prior for (#,q,) is

expressed as
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a — (T_ )2 — /T
rlr,¢may | 7 )oc [L(O ] 7)) "a(,” 1(l—a(,)M lexp{— #20 1 e , (5)

y+ 1
20'() 7'"

where L(6 | r") is (4) with (r',n,) in place of (r,n) and (8, Ay gy 0. 7%. M) are
known hyperparameters. Thus the posterior density is given by
p(0,a, ! rr)=L[0 | r] - 7(6,a, r)

ocr exp{— — 2 [r, =7 — lr,_, —ﬂ]?}

{_‘)

1T
[l y

><7'—_2 exp{— % 2 [7‘: —r— ¢(7’:_1 _7")}2}

t=2
(T_ :u’O )2} 1 _'In/T
e N

poe (6)

X ag“_‘ '(1— ao)/\“_ lexp{-—
7

2
20

If the joint power prior (5) is proper, then the posterior in (6) will be proper.

Theorem 1 Suppose that

7y (8)oc exp{—

(’r—-/'l’())2 } 1 e—n“/r
20.3 7_"/'n+ 1 ’
where  (y,0.,v,m,) are specified hyperparameters, and assume that

m{ay)oc ag"-l(l—a(,)A“_l with specified hyperparameters (8,,),). Then (5) is proper.

proof: To show (5) to be finite, set

g

R= Y r—r—¢- (ri_, =7

t=2

Then
f7r(7",¢,‘r,a0 | )

- f / f /_ _ nnatlex {__ aUR }aén_ 1 (1 —a ))\(;" leX _ M_ T" (’Y““{" l)
P 2r. |70 0 p 20(2)

X exp(— %) dr dr d¢ da,

(r— ,u ) ~1,0 ~ (0 )
= / f f exp{ - }‘10" : (1- ‘10))‘ 1(%-’2"' 770) :
0 )

L

X r(—2—+ v ) dr do da,, . @)

Since
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gy u‘lu

ay —( + %) + %)
(TR‘*‘ n) = 770 ,

(7) is less than or equal to

"u“n

(r=py)?) - _ —(L2+4))  mga
/ / / exp{ - ,u;, }aﬁ“ e a())’\“ o I( 02 °+ Yo )drdoda,. (8)
0 Oy

Finally, (8) is less than or equal to

K« T(yy)n, (- 20) if 0<np, <1, 0<7, <1,
"(WL n) .

K+ I'(y,) if 9y>1,0<7,<1,

K-F(n0+70) if if py>1,9>1,

where

1 _ 7' )
K= / ag" "a- ay) Y™ doa0 / d¢ / exp{ al }dr.
0 20, 0

Since (9) is finite we complete the proof.

4. Numerical results

First, we consider the full conditional distributions in order to implement Gibbs
sampling of (Gelfand and Smith (1990)). From (6), the full conditional posterior

densities of parameters are expressed as the follows
e h(rl (]5,7',0,0,1‘,7‘*)0‘1 TN(u,..az) with 0<r< oo,

where

n, n

I =03[a0(1—¢)0?t_?( ~¢r_)+(1 ¢>)032]2(n—¢ri_1)uof}/(mﬁ)
and

0% = 10%{(ny = 1)ay (1 — ¢)*02 + (n—1)(1 — ¢)%0% + 7}
e hig | r,mayrr o TN(ud),ai) with —1< ¢ <1,

where

-1

R (D SICITE RS 5[ I o] 1

and

Ity -1
0’;@:7{%2(7‘:—1 Z(Tt—l } .

t=2
o h(rlr.¢,ayrr ) IG(y,n),
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where
ayny+n
Y= B +%

and

Ty

a()E["'z 7'(—1 ]2"' i[ﬁ_T_¢(Tt—1_r)]2}+77()-'

Z [7'1 Tt—l 7")]2}-

h(a() I 7',¢,7',’I”, r*)OC aﬁ“_ 1 (1 . al])f\n_ 1 (271_7_)— (1“11“/2 {

Remark 1 All of the full conditional densities are in standard forms except that
of a,. However, the conditional posterior density of a, is log-concave provided
d,>1 and X, > 1. Thus, we use the Adaptive Rejection Sampling (ARS) of Gilks

and Wild (1992) to generate random variates from h(ay | - ).

Example 1: We perform a simulation study and the results are obtained using
the Gibbs sampling along with the ARS. We use 10,000 Gibbs iterations with
burn-in sample of size 1000. For our illustration, we simulate 150 observations for
historical data and 50 observations for current data from the AR(1) model,

r,—6.5=0.7(r,_,—65)+¢, t=2,..,200,
where ¢, ~ N(0,1). <Figure 4.1> shows 200 simulated data and <Table 4.1>
describes the descriptive statistics for the simulated data. <Table 4.3> gives the
posterior estimates of the model parameters for several values of (6,,),) in the
case of truncated normal prior TN(7,1) for r. From <Table 43>, we see that as
the weight of a, increases so does the posterior mean of a,, Ela, | r',r). <Table
43> also indicates the standard deviations of parameters decrease and highest
posterior density (HPD) intervals get narrower as the weight of q, increases.
Further, the HPD intervals are not severe to modest changes in (u,,0,). From
the <Table 4.3>, it is easy to see that when the historical data are incorporated
the default rate r is closer to the true one than when they are not. <Figure 4.2>
shows the marginal posterior densities of the default rate r for two different
priors, uniform and truncated normal with three choices of (ua“, aa”). They are

(0.05,0.0217), (05,0.0498), and (0.95,0.0217). From <Figure 4.2> we see that both
marginal density curves are a little flatter as the prior mean of a, decreases, but
they are almost the same for all three choices of (u,,0,) . We also see that the
standard deviation of marginal posterior distribution of r for uniform prior is

somewhat larger than for the truncated normal. Although we do not present here,
we obtained the same numerical results of standard deviations between two priors.
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<Figure 4.1> Plot of simulated AR(1) data:
r,—65=0.7(r,_,—6.5)+e¢, {€}~ N(0,1)

<Table 41> Summary of AR(1) time series data.

data size mean SD Min. Max.
historical data 150 6.726 1.7130 1.3220 10.5309
current data 50 7.0979 1.3690 4.6844 10.8624
total 200 6.8195 1.6385 1.3220 10.8624

<Table 4.2> AR(1) time series data: Results of conditional least square estimation.

data T ¢ T p-valuet
historical data 6.8142""" 0.7772""" 1.1788 0.3256
current data 6.9285" " 0.6962""" 1.0028 0.2837
total data 6.8971""" 0.7655" " 1.1200 0.1322

o ‘significant at p-value<0.0001.
t: p-value at lag 12 in the Portmanteau test for testing H,'the residual series is a

white noise.
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<Table 43> AR(1) time series data: posterior estimates of model parameters with
wlr) ~ TN(7,1).

Elay | *,7) | B | 0 |Parameter| Mean SD  Median 95% HPD Interval
0 P 7.1417 05065  7.1491 (6.1092, 8.1503)
(with ¢ 0.7158 0.1057 0.7161 (0.5094, 0.9269)
probability 1) T 1.0004 0.2120 0.9720 (0.6255, 1.4247)
r 7.1102 05118 7.1116 (6.0083, 8.1165)
0.0220 0.050010.0217 ¢ 0.7277 0.1008 0.7296 (0.5285, 0.9201)
T 1.0145 0.2079  0.9890 (0.6310, 1.4175)
r 7.0482 04848 7.0555 (6.0625, 7.9878)
0.1022 0.200010.0398 ¢ 0.7425 0.0883 0.7433 (0.5634, 0.9095)
T 1.0465 01904 1.0281 (0.6986, 1.4202)
r 6.9570 04518 6.9568 (6.0133, 7.8109)
0.2971 0.50000.0498 ¢ 0.7621 0.0704 0.7623 (0.6219, 0.8964)
T 1.0867 0.1633 1.0702 (0.78388, 1.4113)
r 6.8809 03943 6.8822 (6.1058, 7.6644)
0.5695 0.8000(0.0398 ¢ 0.7698 0.0575 0.7691 (0.6568, 0.8831)
T 1.1082 0.1368 1.0976 (0.8496, 1.3746)
r 6.8371 03608 6.8377 (6.1117, 7.5198)
0.8014 0.9500{0.0217 ¢ 0.7714 0.0514 0.7718 (06711, 0.8716)
T 11209 01252 11126 (0.8813, 1.3637)
1 r 6.8192 0.3337 6.8211 (6.1934, 7.5305)
(with ¢ 0.7730 0.0469 0.7733 (0.6810, 0.8665)
probability 1) T 1.1270 01139 11198 (0.9160, 1.3572)

Example 2: This example involves the 104-week default rates of SOHO (small
office home office) customers in Kook-Min bank from January 2001 to December
2002. For illustration of our methodologies, we use the data from 2001 as the
historical data and the data from 2002 as the current data. <Figure 4.3> exhibits
the plot of data and <Table 4.4> shows the summary of weekly default rates for
the secured loan. The mean and the standard deviation of the data from 2002 are
slightly larger than those of the data from 2001. We compute the posterior means
of parameters with the joint power prior (2). All procedures for computation is
identical with those for simulation. The CLS estimates of the parameters and the
residual analysis in <Table 4.5> show that our real data is fitted well for AR(1)
model. The CLS estimates of the parameters for the current data are slightly
larger than that of the historical data. For example, the default rate for the current
data is 1.9211, whereas for the historical data it is 1.6034. In <Table 46> the
posterior estimates of the parameters are reported for various (ua“,aa“) when we

give TN(2,1) for the prior of r. From <Table 46> we see that the HPD
intervals are not sensitive to modest changes in weight of a,. This implies that
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the HPD intervals are quite robust in terms of change of (pa“,a““). <Table 4.6>

also shows that as the posterior mean of g, increases the standard deviation and

the length of HPD intervals for all parameters decrease. This is very desirable
feature since it illustrates that more precise estimates can be yielded by
incorporating historical data. For example, when aq, (with probability 1) the
standard deviation and HPD interval for the default rate r are given by
2.2339, (1.5531,2.2859), respectively, whereas, for incorporating historical data (i.e,
a, =1 with probability 1) these are 0.1387, (1.5338,2.0731). These differences are

quite large.

<Table 44> Summary of weekly default rate data for extended security.

data size Mean Std. dev. Minimum Maximum
historical data 52 1.5991 0.7347 0.6110 4.0512
current data 52 1.9360 1.0132 0.0000 4.8780
total 104 1.7676 0.8968 0.0000 48780
(a) (b)
1 T T 1. T T
1.4 . 1.4 .
1t . 1t .
0.4 . 0.4 .
0.6 . 0.6 .
0.4 N 0.4 R
2 2
= =i
=] =
2o.2 . = .
] B3
50 5 0 L
S o 15 8 o 10 15
'8 "

<Figure 4.2> AR(l) time series data: plots of marginal posterior densities for r with (a)
7(r) ~ U(0,100) and (b) w(r) ~ TN(7,1); (dashed curve)(p,,o, )= (0.05,0.0217);

(dotted curve)(ua“,oaﬂ) = (0.5,0.0498); {solid curve)(ua“,oa“) = (0.95,0.0217).
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<Table 45> Weekly default rate data for extended security: Results of conditional least
square estimation.

data r ¢ . T p-value
historical data 1.6034"" 0.3122 0.4969 0.6057
current data 1.92117"" 0.3616"" 0.9173 0.6468
total 1.7795"" 0.3756 0.7020 0.4133

*. significant at significance level 5%,

=+ significant at significance level 1%,

=%k, significant at p-value <0.0001,

t ! p-value at lag 12 in the Portmanteau test for testing H' the residual series is a white

noise.

I)e3RI JTNEIepP

<Figure 4.3> Plot of weekly default rate data for extended security.
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<Table 4.6> Weekly default rate data for extended security: posterior estimates of model
' parameters with 7 {r) ~ TN(2,1).

Elay | 7,r) | Ha | 0w |Parameter| Mean SD  Median 95% HPD Interval
0 r 20105 0.2339 2.0089 (15531, 2.4859)
(with ¢ 0.3915 0.1364 0.3909 (0.1354, 0.6732)
probability 1) T 0.8760 0.1805 0.8523 (0.5543, 1.2356)
r 19993 0.2229 1.9950 {15450, 2.4253)
0.0370 0.050010.0224 ¢ 0.3914 0.1322 0.3910 (0.1315, 0.6571)
T 08599 0.1763 0.8389 (05550, 1.2150)
r 19432 01998 1.9396 (1.5696, 2.3607)
0.2054 0.2500{0.0500 ¢ 03942 0.1227 0.3940 (0.1616, 0.6392)
T 08124 0.1533 0.7941 (05352, 1.1168)
r 1.8806 01739 1.8767 (15534, 2.2419)
0.4859 0.5000(0.0224 ¢ 0.3924 0.1093 0.392 (0.1849, 0.6141)
T 0.7541 0.1237 0.7405 (0.5295, 1.0004)
p 1.8423 0.1568 1.8403 (15438, 2.1608)
0.7013 0.7500(0.0500 ¢ 0.3908 0.1020 0.3907 (0.1976, 0.5915)
T 0.7211 0.1132 0.7096 (05152, 0.9419)
r 1.8094 0.1402 1.8071 (15347, 2.0891)
0.9314 0.950010.0224 ¢ 0.3859 0.0957 0.3857 (0.1972, 0.5713)
T 06938 0.1009 0.6833 (0.5063, 0.8913)
1 r 1.8017 0.1387 1.7998 (1.5338, 2.0731)
(with ¢ 0.3873 0.0939 0.3876 (0.2035, 0.5705)
probability 1) T 0.6857 0.0981 0.6761 (0.4988, 0.8789)

5. Discussion

In this paper we have proposed a new method to estimate the default rate with
the AR(1) model. A feature of our method allows for incorporating of historical
data to estimate the parameters in the model. When the historical data are
incorporated, more precise estimates of parameters can be yielded, especially in
case that historical and current data are similar to the previous studies in
measuring the response and covariates. Further the power prior seems to be
useful in a wide variety of applications, including carcinogenicity studies or clinical
trials. They are also quite useful in model selection contexts since they automate
the prior elicitation procedure for the prior on the model space, as well as the
model parameters arising from the different models. Moreover, when the current
data exhibit quite heterogeneity comparing to previous data, our method may be
more reliable for forecasting credit losses. Further extensions to our proposed
method can be considered. For instance, it can be extended to AR(p) model and
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several historical datasets may be incorporated in current data for predicting a
default rate.
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