• 제목/요약/키워드: induced potential

검색결과 4,816건 처리시간 0.042초

Asiatic Acid Protects Dopaminergic Neurons from Neuroinflammation by Suppressing Mitochondrial ROS Production

  • Chen, Dong;Zhang, Xiao-Ya;Sun, Jing;Cong, Qi-Jie;Chen, Wei-Xiong;Ahsan, Hafiz Muhammad;Gao, Jing;Qian, Jin-Jun
    • Biomolecules & Therapeutics
    • /
    • 제27권5호
    • /
    • pp.442-449
    • /
    • 2019
  • This study sought to evaluate the effects of Asiatic acid in LPS-induced BV2 microglia cells and 1-methyl-4-phenyl-pyridine ($MPP^+$)-induced SH-SY5Y cells, to investigate the potential anti-inflammatory mechanisms of Asiatic acid in Parkinson's disease (PD). SH-SY5Y cells were induced using $MPP^+$ to establish as an in vitro model of PD, so that the effects of Asiatic acid on dopaminergic neurons could be examined. The NLRP3 inflammasome was activated in BV2 microglia cells to explore potential mechanisms for the neuroprotective effects of Asiatic acid. We showed that Asiatic acid reduced intracellular production of mitochondrial reactive oxygen species and altered the mitochondrial membrane potential to regulate mitochondrial dysfunction, and suppressed the NLRP3 inflammasome in microglia cells. We additionally found that treatment with Asiatic acid directly improved SH-SY5Y cell viability and mitochondrial dysfunction induced by $MPP^+$. These data demonstrate that Asiatic acid both inhibits the activation of the NLRP3 inflammasome by downregulating mitochondrial reactive oxygen species directly to protect dopaminergic neurons from, and improves mitochondrial dysfunction in SH-SY5Y cells, which were established as a model of Parkinson's disease. Our finding reveals that Asiatic acid protects dopaminergic neurons from neuroinflammation by suppressing NLRP3 inflammasome activation in microglia cells as well as protecting dopaminergic neurons directly. This suggests a promising clinical use of Asiatic acid for PD therapy.

The Mechanism of Action of Ghrelin and Motilin in the Pacemaker Potentials of Interstitial Cells of Cajal from the Murine Small Intestine

  • Kim, Jeong Nam;Kim, Byung Joo
    • Molecules and Cells
    • /
    • 제42권6호
    • /
    • pp.470-479
    • /
    • 2019
  • Interstitial cells of Cajal (ICCs) are pacemaker cells that exhibit periodic spontaneous depolarization in the gastrointestinal (GI) tract and generate pacemaker potentials. In this study, we investigated the effects of ghrelin and motilin on the pacemaker potentials of ICCs isolated from the mouse small intestine. Using the whole-cell patch-clamp configuration, we demonstrated that ghrelin depolarized pacemaker potentials of cultured ICCs in a dose-dependent manner. The ghrelin receptor antagonist [D-Lys] GHRP-6 completely inhibited this ghrelin-induced depolarization. Intracellular guanosine 5'-diphosphate-${\beta}$-S and pre-treatment with $Ca^{2+}$-free solution or thapsigargin also blocked the ghrelin-induced depolarization. To investigate the involvement of inositol triphosphate ($IP_3$), Rho kinase, and protein kinase C (PKC) in ghrelin-mediated pacemaker potential depolarization of ICCs, we used the $IP_3$ receptor inhibitors 2-aminoethoxydiphenyl borate and xestospongin C, the Rho kinase inhibitor Y-27632, and the PKC inhibitors staurosporine, Go6976, and rottlerin. All inhibitors except rottlerin blocked the ghrelin-induced pacemaker potential depolarization of ICCs. In addition, motilin depolarized the pacemaker potentials of ICCs in a similar dose-dependent manner as ghrelin, and this was also completely inhibited by [D-Lys] GHRP-6. These results suggest that ghrelin induced the pacemaker potential depolarization through the ghrelin receptor in a G protein-, $IP_3$-, Rho kinase-, and PKC-dependent manner via intracellular and extracellular $Ca^{2+}$ regulation. In addition, motilin was able to depolarize the pacemaker potentials of ICCs through the ghrelin receptor. Therefore, ghrelin and its receptor may modulate GI motility by acting on ICCs in the murine small intestine.

Oral Administration of Alcohol-Tolerant Lactic Acid Bacteria Alleviates Blood Alcohol Concentration and Ethanol-Induced Liver Damage in Rodents

  • Misun Yun;Hee Eun Jo;Namhee Kim;Hyo Kyeong Park;Young Seo Jang;Ga Hee Choi;Ha Eun Jo;Jeong Hyun Seo;Ji Ye Mok;Sang Min Park;Hak-Jong Choi
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.838-845
    • /
    • 2024
  • Excessive alcohol consumption can have serious negative consequences on health, including addiction, liver damage, and other long-term effects. The causes of hangovers include dehydration, alcohol and alcohol metabolite toxicity, and nutrient deficiency due to absorption disorders. Additionally, alcohol consumption can slow reaction times, making it more difficult to rapidly respond to situations that require quick thinking. Exposure to a large amount of ethanol can also negatively affect a person's righting reflex and balance. In this study, we evaluated the potential of lactic acid bacteria (LAB) to alleviate alcohol-induced effects and behavioral responses. Two LAB strains isolated from kimchi, Levilactobacillus brevis WiKim0168 and Leuconostoc mesenteroides WiKim0172, were selected for their ethanol tolerance and potential to alleviate hangover symptoms. Enzyme activity assays for alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) were then conducted to evaluate the role of these bacteria in alcohol metabolism. Through in vitro and in vivo studies, these strains were assessed for their ability to reduce blood alcohol concentrations and protect against alcohol-induced liver damage. The results indicated that these LAB strains possess significant ethanol tolerance and elevate ADH and ALDH activities. LAB administration remarkably reduced blood alcohol levels in rats after excessive alcohol consumption. Moreover, the LAB strains showed hepatoprotective effects and enhanced behavioral outcomes, highlighting their potential as probiotics for counteracting the adverse effects of alcohol consumption. These findings support the development of functional foods incorporating LAB strains that can mediate behavioral improvements following alcohol intake.

Cyanidin-3-glucoside Inhibits ATP-induced Intracellular Free $Ca^{2+}$ Concentration, ROS Formation and Mitochondrial Depolarization in PC12 Cells

  • Perveen, Shazia;Yang, Ji Seon;Ha, Tae Joung;Yoon, Shin Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권4호
    • /
    • pp.297-305
    • /
    • 2014
  • Flavonoids have an ability to suppress various ion channels. We determined whether one of flavonoids, cyanidin-3-glucoside, affects adenosine 5'-triphosphate (ATP)-induced calcium signaling using digital imaging methods for intracellular free $Ca^{2+}$ concentration ([$Ca^{2+}$]i), reactive oxygen species (ROS) and mitochondrial membrane potential in PC12 cells. Treatment with ATP ($100{\mu}M$) for 90 sec induced [$Ca^{2+}$]i increases in PC12 cells. Pretreatment with cyanidin-3-glucoside ($1{\mu}g/ml$ to $100{\mu}g/ml$) for 30 min inhibited the ATP-induced [$Ca^{2+}$]i increases in a concentration-dependent manner ($IC_{50}=15.3{\mu}g/ml$). Pretreatment with cyanidin-3-glucoside ($15{\mu}g/ml$) for 30 min significantly inhibited the ATP-induced [$Ca^{2+}$]i responses following removal of extracellular $Ca^{2+}$ or depletion of intracellular [$Ca^{2+}$]i stores. Cyanidin-3-glucoside also significantly inhibited the relatively specific P2X2 receptor agonist 2-MeSATP-induced [$Ca^{2+}$]i responses. Cyanidin-3-glucoside significantly inhibited the thapsigargin or ATP-induced store-operated calcium entry. Cyanidin-3-glucoside significantly inhibited the ATP-induced [$Ca^{2+}$]i responses in the presence of nimodipine and ${\omega}$-conotoxin. Cyanidin-3-glucoside also significantly inhibited KCl (50 mM)-induced [$Ca^{2+}$]i increases. Cyanidin-3-glucoside significantly inhibited ATP-induced mitochondrial depolarization. The intracellular $Ca^{2+}$ chelator BAPTA-AM or the mitochondrial $Ca^{2+}$ uniporter inhibitor RU360 blocked the ATP-induced mitochondrial depolarization in the presence of cyanidin-3-glucoside. Cyanidin-3-glucoside blocked ATP-induced formation of ROS. BAPTA-AM further decreased the formation of ROS in the presence of cyanidin-3-glucoside. All these results suggest that cyanidin-3-glucoside inhibits ATP-induced calcium signaling in PC12 cells by inhibiting multiple pathways which are the influx of extracellular $Ca^{2+}$ through the nimodipine and ${\omega}$-conotoxin-sensitive and -insensitive pathways and the release of $Ca^{2+}$ from intracellular stores. In addition, cyanidin-3-glucoside inhibits ATP-induced formation of ROS by inhibiting $Ca^{2+}$-induced mitochondrial depolarization.

ETM 기법을 이용한 접지전극의 전위간섭 평가 (Assessment of Potential Interference between Grounding Electrodes Using ETM Method)

  • 길형준;김동욱;김동우;이기연;최충석
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 추계학술대회 논문집
    • /
    • pp.333-336
    • /
    • 2007
  • This paper deals with assessment of potential interference between grounding electrodes using ETM(Electrolytic Tank Modeling) method. When a test current flowed through grounding electrode, potential rise was measured and analyzed using an electrolytic tank in real time. In order to analyze the potential interference between grounding electrodes, ETM method was studies. Potential interference between isolated grounding electrodes was evaluated as functions of the separation distance between grounding electrodes and the configuration of grounding electrode to be induced. It was found that the separation distance between grounding electrodes in reducing the potential interference was a major factor.

  • PDF

Effect of Polyopes lancifolia Extract on Oxidative Stress in Human Umbilical Vein Endothelial Cells Induced by High Glucose

  • Min, Seong Won;Han, Ji Sook
    • Preventive Nutrition and Food Science
    • /
    • 제18권1호
    • /
    • pp.38-44
    • /
    • 2013
  • The protective effect of Polyopes lancifolia extract on high glucose-induced oxidative stress was investigated using human umbilical vein endothelial cells (HUVECs). High concentration of glucose (30 mM) treatment induced HUVECs cell death, but Polyopes lancifolia extract, at concentrations of 25, 50, and $100{\mu}g/mL$, protected cells from high glucose-induced damage. Furthermore, thiobarbituric acid reactive substances, intracellular reactive oxygen species, and nitric oxide levels increased by high glucose treatment were effectively decreased by treatment with Polyopes lancifolia extract in a dose-dependent manner. Also, Polyopes lancifolia extract treatment reduced the overexpressions of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear factor-kappa B proteins activation that was induced by high glucose in HUVECs. These results indicate that Polyopes lancifolia extract is a potential therapeutic material that will reduce the damage caused by high glucose-induced-oxidative stress associated with diabetes.

3,4-Dihydroxytoluene suppresses UVB-induced wrinkle formation by inhibiting Raf-1

  • Park, Sang-Hee;Kang, Nam Joo
    • 한국식품과학회지
    • /
    • 제52권4호
    • /
    • pp.385-395
    • /
    • 2020
  • This study examined the effect of 3,4-dihydroxytoluene (DHT) on UVB-induced photoaging and determined its molecular mechanisms, using HaCaT human keratinocytes and SKH-1 hairless mice. DHT suppressed UVB-induced matrix metalloproteinase-1 (MMP-1) expression in HaCaT cells. In vivo data from mouse skin supported that DHT decreased UVB-induced wrinkle formation, epidermal thickness, and matrix metalloproteinase-13 (MMP-13) expression. DHT appeared to exert its anti-aging effects by suppressing UVB-induced Raf-1 kinase activity and subsequent attenuation of UVB-induced phosphorylation of MEK, ERK, and p90RSK in HaCaT cells. In vitro and in vivo pull-down assays revealed that DHT bound with Raf-1 in ATP-noncompetitive manner. Overall, DHT appears to anti-photoaging effects in vitro and in vivo through the suppression of Raf-1 kinase activity and may have potential as a treatment for the prevention of skin aging.

The Inhibitory Effects of the Methanolic Fraction of Pueraria Radix on Hydrogen peroxide-induced Lipid peroxidation and Cadmium-induced cytotoxicity

  • Lim, Jin-A;Kim, Yun-Ha;Lee, Jeong-Ho;Lee, In-A;Baek, Seung-Hwa
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.209.2-209.2
    • /
    • 2003
  • The effects of the methanol subfraction of Pueraria radix on hydrogen peroxide-induced lipid peroxidation and Cd-induced cytotoxicity were investigated in NIH3T3 fibroblasts. After the methanol subfraction treatment, the content of MDA induced by 600${\mu}$M H2O2 significantly decreased in proportion to the subfraction concentrations as well as 50${\mu}$M CdCl2-induced cytotoxicity. Especially, 200$\mu\textrm{g}$/mg concentration of methanol subfraction was strongly shown inhibition of lipid peroxidation and detoxification of Cd. These results suggest that the methanol subfraction of Pueraria radix retains a potential antioxidant and protective effect against cadmium.

  • PDF

Crotamiton, an Anti-Scabies Agent, Suppresses Histamine- and Chloroquine-Induced Itch Pathways in Sensory Neurons and Alleviates Scratching in Mice

  • Choi, Da-Som;Ji, Yeounjung;Jang, Yongwoo;Lee, Wook-Joo;Shim, Won-Sik
    • Biomolecules & Therapeutics
    • /
    • 제28권6호
    • /
    • pp.569-575
    • /
    • 2020
  • Crotamiton is an anti-scabies drug, but it was recently found that crotamiton also suppresses non-scabietic itching in mice. However, the underlying mechanism is largely unclear. Therefore, aim of the study is to investigate mechanisms of the anti-pruritic effect of crotamiton for non-scabietic itching. Histamine and chloroquine are used as non-scabietic pruritogens. The effect of crotamiton was identified using fluorometric intracellular calcium assays in HEK293T cells and primary cultured dorsal root ganglion (DRG) neurons. Further in vivo effect was evaluated by scratching behavior tests. Crotamiton strongly inhibited histamine-induced calcium influx in HEK293T cells, expressing both histamine receptor 1 (H1R) and transient receptor potential vanilloid 1 (TRPV1), as a model of histamine-induced itching. Similarly, it also blocked chloroquine-induced calcium influx in HEK293T cells, expressing both Mas-related G-protein-coupled receptor A3 (MRGPRA3) and transient receptor potential A1 (TRPA1), as a model of histamine-independent itching. Furthermore, crotamiton also suppressed both histamine- and chloroquine-induced calcium influx in primary cultures of mouse DRG. Additionally, crotamiton strongly suppressed histamine- and chloroquine-induced scratching in mice. Overall, it was found that crotamiton has an anti-pruritic effect against non-scabietic itching by histamine and chloroquine. Therefore, crotamiton may be used as a general anti-pruritic agent, irrespective of the presence of scabies.

Recent Findings on the Mechanism of Cisplatin-Induced Renal Cytotoxicity and Therapeutic Potential of Natural Compounds

  • Lee, Dahae;Choi, Sungyoul;Yamabe, Noriko;Kim, Ki Hyun;Kang, Ki Sung
    • Natural Product Sciences
    • /
    • 제26권1호
    • /
    • pp.28-49
    • /
    • 2020
  • The efficacy and side effects associated with anticancer drugs have attracted an extensive research focus. Onconephrology is an evolving field of nephrology that deals with the study of kidney diseases in cancer patients. Most renal diseases in cancer patients are unique, and management of renal disease can be challenging especially in the presence of continuing use of the nephrotoxic drugs. Cisplatin is one of the most important chemotherapeutic agents used in the treatment of various malignancies, such as head, neck, ovarian, and cervical cancers. The major limitation in the clinical use of cisplatin is its tendency to induce adverse effects, such as nephrotoxicity. Recently, plant-derived phytochemicals have emerged as novel agents providing protection against cisplatin-induced renal cytotoxicity. Owing to the diversity of phytochemicals, they cover a wide spectrum of therapeutic indications in cancer and inflammation and have been a productive source of lead compounds for the development of novel medications. Of these agents, the effectiveness of triterpenoids, isolated from various medicinal plants, against cisplatin-induced renal cytotoxicity has been reported most frequently compared to other phytochemicals. Triterpenes are one of the most numerous and diverse groups of plant natural products. Triterpenes ameliorate cisplatin-induced renal damage through multiple pathways by inhibiting reactive oxygen species, inflammation, down-regulation of the MAPK, apoptosis, and NF-κB signaling pathways and upregulation of Nrf2-mediated antioxidant defense mechanisms. Here, we reviewed recent findings on the natural compounds with protective potential in cisplatin-induced renal cytotoxicity, provided an overview of the protective effects and mechanisms that have been identified to date, and discussed strategies to reduce renal cytotoxicity induced by anticancer drugs.