DOI QR코드

DOI QR Code

Asiatic Acid Protects Dopaminergic Neurons from Neuroinflammation by Suppressing Mitochondrial ROS Production

  • Chen, Dong (Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University) ;
  • Zhang, Xiao-Ya (Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University) ;
  • Sun, Jing (Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University) ;
  • Cong, Qi-Jie (Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University) ;
  • Chen, Wei-Xiong (Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University) ;
  • Ahsan, Hafiz Muhammad (Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University) ;
  • Gao, Jing (Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University) ;
  • Qian, Jin-Jun (Department of Neurology, The Fourth People's Hospital of Zhenjiang)
  • Received : 2018.09.27
  • Accepted : 2019.02.20
  • Published : 2019.09.01

Abstract

This study sought to evaluate the effects of Asiatic acid in LPS-induced BV2 microglia cells and 1-methyl-4-phenyl-pyridine ($MPP^+$)-induced SH-SY5Y cells, to investigate the potential anti-inflammatory mechanisms of Asiatic acid in Parkinson's disease (PD). SH-SY5Y cells were induced using $MPP^+$ to establish as an in vitro model of PD, so that the effects of Asiatic acid on dopaminergic neurons could be examined. The NLRP3 inflammasome was activated in BV2 microglia cells to explore potential mechanisms for the neuroprotective effects of Asiatic acid. We showed that Asiatic acid reduced intracellular production of mitochondrial reactive oxygen species and altered the mitochondrial membrane potential to regulate mitochondrial dysfunction, and suppressed the NLRP3 inflammasome in microglia cells. We additionally found that treatment with Asiatic acid directly improved SH-SY5Y cell viability and mitochondrial dysfunction induced by $MPP^+$. These data demonstrate that Asiatic acid both inhibits the activation of the NLRP3 inflammasome by downregulating mitochondrial reactive oxygen species directly to protect dopaminergic neurons from, and improves mitochondrial dysfunction in SH-SY5Y cells, which were established as a model of Parkinson's disease. Our finding reveals that Asiatic acid protects dopaminergic neurons from neuroinflammation by suppressing NLRP3 inflammasome activation in microglia cells as well as protecting dopaminergic neurons directly. This suggests a promising clinical use of Asiatic acid for PD therapy.

Keywords

References

  1. Ahmad, R. M., Justin, T. A. and Manivasagam, T. (2018a) Neuroprotective role of Asiatic acid in aluminium chloride induced rat model of Alzheimer's disease. Front. Biosci. (Schol. Ed.) 10, 262-275. https://doi.org/10.2741/s514
  2. Ahmad, R. M., Justin, T. A., Manivasagam, T., Nataraj, J., Essa, M. M. and Chidambaram, S. B. (2018b) Asiatic acid nullified aluminium toxicity in in vitro model of Alzheimer's disease. Front. Biosci. (Elite Ed.) 10, 287-299.
  3. Al-Ayadhi, L. Y. (2004) Oxidative stress and neurodegenerative disease. Neurosciences (Riyadh) 9, 19-23.
  4. Chao, P. C., Lee, H. L. and Yin, M. C. (2016) Asiatic acid attenuated apoptotic and inflammatory stress in the striatum of MPTP-treated mice. Food Funct. 7, 1999-2005. https://doi.org/10.1039/C6FO00041J
  5. Chiba, K., Trevor, A. and Castagnoli, N., Jr. (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem. Biophys. Res. Commun. 120, 574-578. https://doi.org/10.1016/0006-291X(84)91293-2
  6. Codolo, G., Plotegher, N., Pozzobon, T., Brucale, M., Tessari, I., Bubacco, L. and de Bernard, M. (2013) Triggering of inflammasome by aggregated ${\alpha}$-synuclein, an inflammatory response in synucleinopathies. PLoS ONE 8, e55375. https://doi.org/10.1371/journal.pone.0055375
  7. Damier, P., Hirsch, E. C., Agid, Y. and Graybiel, A. M. (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain 122, 1437-1448. https://doi.org/10.1093/brain/122.8.1437
  8. Dauer, W. and Przedborski, S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889-909. https://doi.org/10.1016/S0896-6273(03)00568-3
  9. Di Monte, M., Sandy, M. S., Ekstrom, G. and Smith, M. T. (1986) Comparative studies on the mechanisms of paraquat and 1-methyl-4-phenylpyridine (MPP+) cytotoxicity. Biochem. Biophys. Res. Commun. 137, 303-309. https://doi.org/10.1016/0006-291X(86)91210-6
  10. Ellis, J. M. and Fell, M. J. (2017) Current approaches to the treatment of Parkinson's Disease. Bioorg. Med. Chem. Lett. 27, 4247-4255. https://doi.org/10.1016/j.bmcl.2017.07.075
  11. Fan, Z., Lu, M., Qiao, C., Zhou, Y., Ding, J. H. and Hu, G. (2015) MicroRNA-7 enhances subventricular zone neurogenesis by inhibiting NLRP3/caspase-1 axis in adult neural stem cells. Mol. Neurobiol. 53, 7057-7069.
  12. Guo, W., Liu, W., Jin, B., Geng, J., Li, J., Ding, H., Wu, X., Xu, Q., Sun, Y. and Gao, J. (2015) Asiatic acid ameliorates dextran sulfate sodium-induced murine experimental colitis via suppressing mitochondria-mediated NLRP3 inflammasome activation. Int. Immunopharmacol. 24, 232-238. https://doi.org/10.1016/j.intimp.2014.12.009
  13. Heid, M. E., Keyel, P. A., Kamga, C., Shiva, S., Watkins, S. C. and Salter, R. D. (2013) Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J. Immunol. 191, 5230-5238. https://doi.org/10.4049/jimmunol.1301490
  14. Hirsch, E., Graybiel, A. M. and Agid, Y. A. (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334, 345-348. https://doi.org/10.1038/334345a0
  15. Hirsch, E. C., Hunot, S. and Hartmann, A. (2005) Neuroinflammatory processes in Parkinson's disease. Parkinsonism Relat. Disord. 11, S9-S15. https://doi.org/10.1016/j.parkreldis.2004.10.013
  16. Jew, S. S., Yoo, C. H., Lim, D. Y., Kim, H., Mook-Jung, I., Jung, M. W., Choi, H., Jung, Y. H., Kim, H. and Park, H. G. (2010) Structure-activity relationship study of asiatic acid derivatives against beta amyloid (A beta)-induced neurotoxicity. Bioorg. Med. Chem. Lett. 10, 119-121. https://doi.org/10.1016/S0960-894X(99)00658-7
  17. Kalia, L. V. and Lang, A. E. (2015) Parkinson's disease. Lancet 386, 896-912. https://doi.org/10.1016/S0140-6736(14)61393-3
  18. Kehrer, J. P. and Smith, C. V. (1994) Free radicals in biology: sources, reactivities, and roles in the etiology of human diseases. In Natural Antioxidants in Human Health & Disease, pp. 25-62.
  19. Lambert, C. E. and Bondy, S. C. (1989) Effects of MPTP, MPP+ and paraquat on mitochondrial potential and oxidative stress. Life Sci. 44, 1277-1284. https://doi.org/10.1016/0024-3205(89)90365-2
  20. Latz, E. (2010) The inflammasomes: mechanisms of activation and function. Curr. Opin. Immunol. 22, 28-33. https://doi.org/10.1016/j.coi.2009.12.004
  21. Lee, M. K., Kim, S. R., Sung, S. H., Lim, D., Kim, H., Choi, H., Park, H. K., Je, S. and Ki, Y. C. (2000) Asiatic acid derivatives protect cultured cortical neurons from glutamate-induced excitotoxicity. Res. Commun. Mol. Pathol. Pharmacol. 108, 75-86.
  22. Liu, S. B., Mi, W. L. and Wang, Y. Q. (2013) Research progress on the NLRP3 inflammasome and its role in the central nervous system. Neurosci. Bull. 29, 779-787. https://doi.org/10.1007/s12264-013-1328-9
  23. Lu, Y., Liu, S., Wang, Y., Wang, D., Gao, J. and Zhu, L. (2016) Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces hepg2 cells death. Eur. J. Pharmacol. 786, 212-223. https://doi.org/10.1016/j.ejphar.2016.06.010
  24. Mook-Jung, I., Shin, J. E., Yun, S. H., Huh, K., Koh, J. Y., Park, H. K., Jew, S. S. and Jung, M. W. (2015) Protective effects of asiaticoside derivatives against beta-amyloid neurotoxicity. J. Neurosci. Res. 58, 417-425. https://doi.org/10.1002/(SICI)1097-4547(19991101)58:3<417::AID-JNR7>3.0.CO;2-G
  25. Moore, D. J., West, A. B., Dawson, V. L. and Dawson, T. M. (2004) Molecular pathophysiology of Parkinson's disease. Annu. Rev. Neurosci. 28, 57-87. https://doi.org/10.1146/annurev.neuro.28.061604.135718
  26. Nataraj, J., Manivasagam, T., Thenmozhi, A. J. and Essa, M. M. (2017) Neuroprotective effect of asiatic acid on rotenone-induced mitochondrial dysfunction and oxidative stress-mediated apoptosis in differentiated SH-SYS5Y cells. Nutr. Neurosci. 20, 351-359. https://doi.org/10.1080/1028415X.2015.1135559
  27. Niizuma, K., Endo, H. and Chan, P. H. (2010) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J. Neurochem. 109 Suppl 1, 133-138. https://doi.org/10.1111/j.1471-4159.2009.05897.x
  28. Qiao, C., Zhang, L. X., Sun, X. Y., Ding, J. H., Lu, M. and Hu, G. (2016) Caspase-1 deficiency alleviates dopaminergic neuronal death via inhibiting caspase-7/AIF pathway in MPTP/p mouse model of parkinson's disease. Mol. Neurobiol. 54, 4292-4302.
  29. Rose, J., Brian, C., Woods, J., Pappa, A., Panayiotidis, M. I., Powers, R. and Franco, R. (2017) Mitochondrial Dysfunction in Glial Cells: Implications for Neuronal Homeostasis and Survival. Toxicology 391, 109-115. https://doi.org/10.1016/j.tox.2017.06.011
  30. Sarkar, S., Malovic, E., Harishchandra, D. S., Ghaisas, S., Panicker, N., Charli, A., Palanisamy, B. N., Rokad, D., Jin, H., Anantharam, V., Kanthasamy, A. and Kanthasamy, A. G. (2017) Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson's disease. NPJ Parkinsons Dis. 3, 30. https://doi.org/10.1038/s41531-017-0032-2
  31. Schapira, A. H. (1999) Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia. Biochim. Biophys. Acta 1410, 159-170. https://doi.org/10.1016/S0005-2728(98)00164-9
  32. Schroder, K. and Tschopp, J. (2010) The inflammasomes. Cell 140, 821-832. https://doi.org/10.1016/j.cell.2010.01.040
  33. Shetty, B. S., Udupa, S. L., Udupa, A. L. and Somayaji, S. N. (2006) Effect of Centella asiatica L (Umbelliferae) on normal and dexamethasone-suppressed wound healing in Wistar Albino rats. Int. J. Low. Extrem. Wounds 5, 137-143. https://doi.org/10.1177/1534734606291313
  34. Singer, T. P. and Ramsay, R. R. (1990) Mechanism of the neurotoxicity of MPTP. An update. FEBS Lett. 274, 1-8. https://doi.org/10.1016/0014-5793(90)81315-F
  35. Sun, J., Ren, D. D., Wan, J. Y., Chen, C., Chen, D., Yang, H., Feng, C. L. and Gao, J. (2017) Desensitizing mitochondrial permeability transition by erk-cyclophilin d axis contributes to the neuroprotective effect of gallic acid against cerebral ischemia/reperfusion injury. Front. Pharmacol. 8, 184.
  36. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M. and Kroemer, G. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446. https://doi.org/10.1038/17135
  37. Tang, L. X., He, R. H., Yang, G., Tan, J. J., Zhou, L., Meng, X. M., Huang, X. R. and Lan, H. Y. (2012) Asiatic acid inhibits liver fibrosis by blocking TGF-beta/Smad signaling in vivo and in vitro. PLoS ONE 7, e31350. https://doi.org/10.1371/journal.pone.0031350
  38. Wang, X., Gao, Y., Song, J., Tang, C., Wang, M. and Que, L., Liu, L., Zhu, G., Chen, Q., Yao, Y., Xu, Y., Li, J. and Li, Y. (2017) The TIR/BB-loop mimetic AS-1 prevents non-alcoholic steatohepatitis and hepatic insulin resistance by inhibiting NLRP3-ASC inflammasome activation. Br. J. Pharmacol. 174, 1841-1856. https://doi.org/10.1111/bph.13786
  39. Whitton, P. S. (2007) Inflammation as a causative factor in the aetiology of Parkinson's disease. Br. J. Phamacol. 150, 963-976. https://doi.org/10.1038/sj.bjp.0707167
  40. Wu, T., Geng, J., Guo, W., Gao, J. and Zhu, X. (2017) Asiatic acid inhibits lung cancer cell growth in vitro and in vivo by destroying mitochondria. Acta Pharm. Sin. B 7, 65-72. https://doi.org/10.1016/j.apsb.2016.04.003
  41. Xiong, Y., Ding, H., Xu, M. and Gao, J. (2009) Protective Effects of Asiatic Acid on Rotenone- or H2O2-Induced Injury in SH-SY5Y Cells. Neurochem. Res. 34, 746-754. https://doi.org/10.1007/s11064-008-9844-0
  42. Xu, M. F., Xiong, Y. Y., Liu, J. K., Qian, J. J., Zhu, L. and Gao, J. (2012) Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol. Sin. 33, 578-587. https://doi.org/10.1038/aps.2012.3
  43. Xu, W., Zhao, Y., Zhang, B., Xu, B., Yang, Y., Wang, Y. and Liu, C. (2015) Resveratrol attenuates hyperoxia-induced oxidative stress, inflammation and fibrosis and suppresses Wnt/${\beta}$-catenin signalling in lungs of neonatal rats. Clin. Exp. Pharmacol. Physiol. 42, 1075-1083. https://doi.org/10.1111/1440-1681.12459
  44. Yan, Y., Jiang, W., Liu, L., Wang, X., Ding, C., Tian, Z. and Zhou, R. (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160, 62-73. https://doi.org/10.1016/j.cell.2014.11.047
  45. Zhang, X., Wu, J., Dou, Y., Xia, B., Rong, W., Rimbach, G. and Lou, Y. (2012) Asiatic acid protects primary neurons against C2-ceramide-induced apoptosis. Eur. J. Pharmacol. 679, 51-59. https://doi.org/10.1016/j.ejphar.2012.01.006
  46. Zhou, Y., Lu, M., Du, R., Qiao, C., Jiang, C., Zhang, K., Ding, J. and Hu, G. (2016) MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson's disease. Mol. Neurodegener. 11, 28. https://doi.org/10.1186/s13024-016-0094-3

Cited by

  1. Screening of the Hepatotoxic Components in Fructus Gardeniae and Their Effects on Rat Liver BRL-3A Cells vol.24, pp.21, 2019, https://doi.org/10.3390/molecules24213920
  2. Centella asiatica L. Phytosome Improves Cognitive Performance by Promoting Bdnf Expression in Rat Prefrontal Cortex vol.12, pp.2, 2020, https://doi.org/10.3390/nu12020355
  3. Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson’s Disease: Current Knowledge and Future Perspectives vol.2021, 2019, https://doi.org/10.1155/2021/6680935
  4. In Vivo Biocompatible Self-Assembled Nanogel Based on Hyaluronic Acid for Aqueous Solubility and Stability Enhancement of Asiatic Acid vol.13, pp.23, 2019, https://doi.org/10.3390/polym13234071
  5. LncRNA RMST Regulates Neuronal Apoptosis and Inflammatory Response via Sponging miR-150-5p in Parkinson’s Disease vol.29, pp.1, 2019, https://doi.org/10.1159/000518212