Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0028

The Mechanism of Action of Ghrelin and Motilin in the Pacemaker Potentials of Interstitial Cells of Cajal from the Murine Small Intestine  

Kim, Jeong Nam (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine)
Kim, Byung Joo (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine)
Abstract
Interstitial cells of Cajal (ICCs) are pacemaker cells that exhibit periodic spontaneous depolarization in the gastrointestinal (GI) tract and generate pacemaker potentials. In this study, we investigated the effects of ghrelin and motilin on the pacemaker potentials of ICCs isolated from the mouse small intestine. Using the whole-cell patch-clamp configuration, we demonstrated that ghrelin depolarized pacemaker potentials of cultured ICCs in a dose-dependent manner. The ghrelin receptor antagonist [D-Lys] GHRP-6 completely inhibited this ghrelin-induced depolarization. Intracellular guanosine 5'-diphosphate-${\beta}$-S and pre-treatment with $Ca^{2+}$-free solution or thapsigargin also blocked the ghrelin-induced depolarization. To investigate the involvement of inositol triphosphate ($IP_3$), Rho kinase, and protein kinase C (PKC) in ghrelin-mediated pacemaker potential depolarization of ICCs, we used the $IP_3$ receptor inhibitors 2-aminoethoxydiphenyl borate and xestospongin C, the Rho kinase inhibitor Y-27632, and the PKC inhibitors staurosporine, Go6976, and rottlerin. All inhibitors except rottlerin blocked the ghrelin-induced pacemaker potential depolarization of ICCs. In addition, motilin depolarized the pacemaker potentials of ICCs in a similar dose-dependent manner as ghrelin, and this was also completely inhibited by [D-Lys] GHRP-6. These results suggest that ghrelin induced the pacemaker potential depolarization through the ghrelin receptor in a G protein-, $IP_3$-, Rho kinase-, and PKC-dependent manner via intracellular and extracellular $Ca^{2+}$ regulation. In addition, motilin was able to depolarize the pacemaker potentials of ICCs through the ghrelin receptor. Therefore, ghrelin and its receptor may modulate GI motility by acting on ICCs in the murine small intestine.
Keywords
gastrointestinal motility; ghrelin; interstitial cells of Cajal; motilin; pacemaker potentials;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aerssens, J., Depoortere, I., Thielemans, L., Mitselos, A., Coulie, B., and Peeters, T.L. (2004). The rat lacks functional genes for motilin and the motilin receptor. Neurogastroenterol. Motil. 16, 841.
2 Brown, J.C., Mutt, V., and Dryburgh, J.R. (1971). The further purification of motilin, a gastric motor activity stimulating polypeptide from the mucosa of the small intestine of hogs. Can. J. Physiol. Pharmacol. 49, 399-405.   DOI
3 Depoortere, I., De Winter, B., Thijs, T., De Man, J., Pelckmans, P., and Peeters, T. (2005). Comparison of the gastroprokinetic effects of ghrelin, GHRP-6 and motilin in rats in vivo and in vitro. Eur. J. Pharmacol. 515, 160-168.   DOI
4 Dimitrova, D.Z., Mihov, D.N., Wang, R., Hristov, K.L., Rizov, L.I., Bolton, T.B., and Duridanova, D.B. (2007). Contractile effect of ghrelin on isolated guinea-pig renal arteries. Vascul. Pharmacol. 47, 31-40.   DOI
5 Feighner, S.D., Tan, C.P., McKee, K.K., Palyha, O.C., Hreniuk, D.L., Pong, S.S., Austin, C.P., Figueroa, D., MacNeil, D., Cascieri, M.A., et al. (1999). Receptor for motilin identified in the human gastrointestinal system. Science 284, 2184-2188.   DOI
6 Feng, X., Peeters, T.L., and Tang, M. (2007). Motilin activates neurons in the rat amygdale and increases gastric motility. Peptides 28, 625-631.   DOI
7 Folwaczny, C., Chang, J.K., and TschCop, M. (2001). Ghrelin and motilin: two sides of one coin? Eur. J. Endocrinol. 144, R1-R3.   DOI
8 Fujino, K., Inui, A., Asakawa, A., Kihara, N., Fujimura, M., and Fujimiya, M. (2003). Ghrelin induces fasted motor activity of the gastrointestinal tract in conscious fed rats. J. Physiol. 550, 227-240.   DOI
9 Gfroerer, S. and Rolle, U. (2013). Interstitial cells of Cajal in the normal human gut and in Hirschsprung disease. Pediatr. Surg. Int. 29, 889-897.   DOI
10 Fukuda, H., Mizuta, Y., Isomoto, H., Takeshima, F., Ohnita, K., Ohba, K., Omagari, K., Taniyama, K., and Kohno, S. (2004). Ghrelin enhances gastric motility through direct stimulation of intrinsic neural pathways and capsaicin-sensitive afferent neurones in rats. Scand. J. Gastroenterol. 39, 1209-1214.   DOI
11 Hong, N.R., Park, H.S., Ahn, T.S., Kim, H.J., Ha, K.T., and Kim, B.J. (2015). Ginsenoside Re inhibits pacemaker potentials via adenosine triphosphate-sensitive potassium channels and the cyclic guanosine monophosphate/nitric oxide-dependent pathway in cultured interstitial cells of Cajal from mouse small intestine. J. Ginseng Res. 39, 314-321.   DOI
12 Hosoda, H., Kojima, M., and Kangawa, K. (2006). Biological, physiological, and pharmacological aspects of ghrelin. J. Pharmacol. Sci. 100, 398-410.   DOI
13 Huang, J., Zhou, H., Mahavadi, S., Sriwai, W., Lyall, V., and Murthy, K.S. (2005). Signaling pathways mediating gastrointestinal smooth muscle contraction and MLC20 phosphorylation by motilin receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G23-G31.   DOI
14 Huizinga, J.D., Thuneberg, L., Kluppel, M., Malysz, J., Mikkelsen, H.B., and Bernstein, A. (1995). W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373, 347-349.   DOI
15 Itoh, Z. (1997). Motilin and clinical application. Peptides 18, 593-608.   DOI
16 Kitazawa, T., De Smet, B., Verbeke, K., Depoortere, I., and Peeters, T.L. (2005). Gastric motor effects of peptide and non-peptide ghrelin agonists in mice in vivo and in vitro. Gut 54, 1078-1084.   DOI
17 Jun, J.Y., Choi, S., Chang, I.Y., Yoon, C.K., Jeong, H.G., Kong, I.D., So, I., Kim, K.W., and You, H.J. (2005). Deoxycholic acid inhibits pacemaker currents by activating ATP-dependent K+ channels through prostaglandin E2 in interstitial cells of Cajal from the murine small intestine. Br. J. Pharmacol. 144, 242-251.   DOI
18 Kashyap, P., Gomez-Pinilla, P.J., Pozo, M.J., Cima, R.R., Dozois, E.J., Larson, D.W., Ordog, T., Gibbons, S.J., and Farrugia, G. (2011). Immunoreactivity for Ano1 detects depletion of Kit-positive interstitial cells of Cajal in patients with slow transit constipation. Neurogastroenterol. Motil. 23, 760-765.   DOI
19 Kim, B.J., Lim, H.H., Yang, D.K., Jun, J.Y., Chang, I.Y., Park, C.S., So, I., Stanfield, P.R., and Kim, K.W. (2005). Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology 129, 1504-1517.   DOI
20 Kitazawa, T., Shimazaki, M., Kikuta, A., Yaosaka, N., Teraoka, H., and Kaiya, H. (2016). Effects of ghrelin and motilin on smooth muscle contractility of the isolated gastrointestinal tract from the bullfrog and Japanese fire belly newt. Gen. Comp. Endocrinol. 232, 51-59.   DOI
21 Koh, S.D., Sanders, K.M., and Ward, S.M. (1998). Spontaneous electrical rhythmicity in cultured interstitial cells of Cajal from the murine small intestine. J. Physiol. 513, 203-213.   DOI
22 Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matuo, H., and Kangawa, K. (1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656-660.   DOI
23 Mondal, A., Aizawa, S., Sakata, I., Goswami, C., Oda, S., and Sakai, T. (2013). Mechanism of ghrelin-induced gastric contractions in Suncus murinus (house musk shrew): involvement of intrinsic primary afferent neurons. PLoS One 8, e60365.   DOI
24 Kojima, M., Hosoda, H., and Kangawa, K. (2001). Purification and distribution of ghrelin: the natural endogenous ligand for the growth hormone secretagogue receptor. Horm. Res. 56, 93-97.
25 Kojima, M. and Kangawa, K. (2005). Ghrelin: structure and function. Physiol. Rev. 85, 495-522.   DOI
26 Komori, S., Kawai, M., Takewaki, T., and Ohashi, H. (1992). GTP-binding protein involvement in membrane currents evoked by carbachol and histamine in guinea-pig ileal muscle. J. Physiol. 450, 105-126.   DOI
27 Lu, N.F., Zheng, R.Q., and Lin, H. (2010). Study of erythromycin and metoclopramide in treatment of feeding intolerance of critically ill patients in intensive care unit. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 22, 36-39.
28 Miller, P., Roy, A., St-Pierre, S., Dagenais, M., Lapointe, R., and Poitras, P. (2000). Motilin receptors in the human antrum. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G18-G23.   DOI
29 Muller, M., Colcuc, S., Drescher, D.G., Eckardt, A.J., von Pein, H., Taube, C., Schumacher, J., Gockel, H.R., Schimanski, C.C., Lang, H., et al. (2014). Murine genetic deficiency of neuronal nitric oxide synthase (nNOS(-/-) ) and interstitial cells of Cajal (W/W(v) ): implications for achalasia? J. Gastroenterol. Hepatol. 29, 1800-1807.   DOI
30 Nakamura, T., Onaga, T., and Kitazawa, T. (2010). Ghrelin stimulates gastric motility of the guinea-pig through activation of a capsaicin-sensitive neural pathway: in vivo and in vitro functional studies. Neurogastroenterol. Motil. 22, 446-452.   DOI
31 Nunoi, H., Matsuura, B., Utsunomiya, S., Ueda, T., Miyake, T., Furukawa, S., Kumagi, T., Ikeda, Y., Abe, M., Hiasa, Y., et al. (2012). A relationship between motilin and growth hormone secretagogue receptors. Regul. Pept. 176, 28-35.   DOI
32 Poitras, P. and Peeters, T.L. (2008). Motilin, current opinion in endocrinology. Diabetes Obes. 15, 54-57.
33 Ogata, R., Inoue, Y., Nakano, H., Ito, Y., and Kitamura, K. (1996). Oestradiol-induced relaxation of rabbit basilar artery by inhibition of voltage-dependent Ca channels through GTP-binding protein. Br. J. Pharmacol. 117, 351-359.   DOI
34 Ogawa, A., Mochiki, E., Yanai, M., Morita, H., Toyomasu, Y., Ogata, K., Ohno, T., Asao, T., and Kuwano, H. (2012). Interdigestive migrating contractions are coregulated by ghrelin and motilin in conscious dogs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R233-R241.   DOI
35 Ohno, T., Mochiki, E., and Kuwano, H. (2010). The roles of motilin and ghrelin in gastrointestinal motility. Int. J. Pept. 2010, 2010.
36 Sanger, G.J. (2008). Motilin, ghrelin and related neuropeptides as targets for the treatment of GI diseases. Drug Discov. Today 13, 234-239.   DOI
37 Sanger, G.J. and Furness, J.B. (2016). Ghrelin and motilin receptors as drug targets for gastrointestinal disorders. Nat. Rev. Gastroenterol. Hepatol. 13, 38-48.   DOI
38 Sanger, G.J., Holbrook, J.D., and Andrews, P.L.R. (2011). The translational value of rodent gastrointestinal functions: a cautionary tale. Trends Pharmacol. Sci. 32, 402-409.   DOI
39 Smet, B.D., Mitselos, A., and Depoortere, I. (2009). Motilin and ghrelin as prokinetic drug targets. Pharmacol. Ther. 123, 207-223.   DOI
40 Tack, J., Depoortere, I., Bisschops, R., Delporte, C., Coulie, B., Meulemans, A., Janssens, J., and Peeters, T. (2006). Influence of ghrelin on interdigestive gastrointestinal motility in humans. Gut 55, 327-333.   DOI
41 Yang, S., Wu, B., Sun, H., Sun, T., Han, K., Li, D., Ji, F., Zhang, G., and Zhou, D. (2017). Impaired insulin/IGF-1 is responsible for diabetic gastroparesis by damaging myenteric cholinergic neurones and interstitial cells of Cajal. Biosci. Rep. 37, BSR20170776.   DOI
42 Thielemans, L., Depoortere, I., Van Assche. G., Bender, E., and Peeters, T.L. (2001). Demonstration of a functional motilin receptor in TE671 cells from human cerebellum. Brain Res. 895, 119-128.   DOI
43 Tomasetto, C., Karam, S.M., Ribieras, S., Masson, R., Lefebvre, O., Staub, A., Alexander, G., Chenard, M.P., and Rio, M.C. (2000). Identification and characterization of a novel gastric peptide hormone: the motilin related peptide. Gastroenterology 119, 395-405.   DOI
44 Tonelli, A.R., Drane, W.E., and Collins, D.P. (2009). Erythromycin improves gastric emptying half-time in adult cystic fibrosis patients with gastroparesis. J. Cyst. Fibros. 8, 193-197.   DOI
45 Wang, G., Lee, H.M., Englander, E., and Greeley, G.H., Jr. (2002). Ghrelin-not just another stomach hormone. Regul. Pept. 105, 75-81.   DOI
46 Ward, S.M. (2000). Interstitial cells of Cajal in enteric neurotransmission. Gut 47, 40-43.