• Title/Summary/Keyword: indoor heating system

Search Result 242, Processing Time 0.027 seconds

Analysis of Annual Operation Status of Central Heating and Cooling System in a Public Office Building (공공건물 중앙식 냉난방시스템의 연간 운영 사례 분석)

  • Ra, Seon-Jung;Aum, Tae-Yun;Son, Jin-Woong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.175-180
    • /
    • 2020
  • The purpose of this study was to clarify precautions during the design and operation phases for energy reduction in a public office building. To check the operation status of the building, we measured the indoor temperature and humidity in the office space of the building installed central heating and cooling systems. And we analyzed these data and annual BEMS data. As a result, we found six problems related to decreasing system efficiency. Based on these, we presented the information to improve the efficiency of the system from the design and operation phase. Also, we present the need for a system to support the decision-making of operational managers in real-time for the energy efficiency of the building.

Variations of Concentration Levels of Volatile Organic Compounds in the Indoor Air due to Floor Waxing (왁스 청소에 기인한 실내 공기 중 휘발성 유기화합물의 농도변화)

  • 김만구;박춘옥;권영진;이용근;이대운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.3
    • /
    • pp.221-229
    • /
    • 1997
  • Wax is a protectant for floors that is used widely in Korea and is considered an emission source of volatile organic compounds (VOCs) in the indoor environment. This study examined the concentration change of indoor VOCs due to waxing and also due to wiping the floor with an oiled dustcloth. VOCs were identified using a cryogenic concentration/thermal desorption system with capillary GC that utilized a liquid nitrogen cryostat and induction heating. The major components emitted from the waxing were nonane, decane, undecane, $C_2$-benzene, and $C_3$-benzene. The concentrations of nonane were 1,276 $\mu\textrm{g}$/㎥ an hour after wax applications, 832 $\mu\textrm{g}$/㎥ after 3 days, and less than 10$\mu\textrm{g}$/㎥) after 15 days. Another emission source of VOCs in indoor was the oiled dustcloth used for cleaning the floor. The oiled dustcloth gave VOCs concentrations three times higher than the normal undusted floor.

  • PDF

The Measurement of the Indoor Air Quality in Subway (전동차의 실내 공기청정도 측정 평가)

  • So, Jin-Sub;Yoo, Seong-Yeon;Yun, Cha-Jung;Kim, Wan-Jong;Kang, Sung-Hae;Park, Duk-Sin;Cho, Young-Min;Kwon, Soon-Bark;Park, Eun-Young
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1325-1329
    • /
    • 2007
  • Indoor air quality is an important determinant of human health and comfort. However, the complexity of pollution sources and the multitude of parties responsible for creating indoor exposures makes the improvement of air quality difficult. The HVAC(Heating, Ventilating and Air-Conditioning) system is important facility to provide comfortable environment passenger service. The Ministry of Environment is established "Indoor Air Quality Management guidelines in Public Facilities"in December 2006. Hereupon, the train and the subway are included. In this research air quality in the Subway compartment has been measured. As a result, the concentrations of PM10 and $CO_2$ were reached to 93% and 61% of the regulation values, respectively. Thus, the indoor air qualities of subway have been proved that they satisfy the recommended guidelines by the Ministry of Environment.

  • PDF

The Measurement of the Indoor Air Quality in KTX Train (KTX 객실내 공기청정도 측정)

  • So, Jin-Sub;Lee, Sung-Uk;Park, Duck-Shin;Yoo, Seong-Yeon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1210-1213
    • /
    • 2006
  • Indoor air quality is an important determinant of human health and comfort. However, the complexity of pollution sources and the multitude of parties responsible for creating indoor exposures makes the improvement of air quality difficult. The KTX HVAC(Heating, Ventilating and Air-Conditioning) system is important facility to provide comfortable environment passenger service. The Ministry of Environment is planning to enforce$\square\square$Indoor Air Quality Management law in Public Facilities$\square\square$in year 2008. Hereupon, the train and the subway are included. In this research air quality in the KTX Train compartment has measured. As a result, The average amounts of PM10(particulate matters), $CO_2$(carbon dioxide)measured $20{\mu}g/m^3$, 1,097ppm in KTX respectively. There are compare to regulation the value is 10% for PM10 and 43% for $CO_2$. Thus, the indoor air quality of KTX train have been proved satisfy the recommendation the Ministry of Environment guidelines.

  • PDF

Development of high-efficiency heating system using humidifying particles (가습 입자를 활용한 고효율 난방 시스템 개발)

  • Lee, Jeong-Won;Hong, Kyung-Bo
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.17-24
    • /
    • 2020
  • Products for heating indoors in low temperature and dry winter are largely divided into products using fossil fuels and products using electricity. The fossil fuels can warm the entire space by convection, but there is a high risk of fire and the frequent ventilation due to the increase in carbon monoxide and carbon dioxide. Heaters using electricity are mainly used because they are convenient to use and are cheap. However, these products can not efficiently warm the air because they use radiation energy. In other words, only the front part exposed to the heater is warm, and the rear part has no heating effect at all. Also, because it emits a large amount of light, fatigue of the eyes is very high. Another problem is that when using electric heaters, the room tends to be dry by high heat. Indoor humidity maintenance is a very important factor in the prevention and treatment of respiratory diseases. Especially, it is essential for health care for infants, bronchial organs and people with weak respiratory because humidity is low in winter. In this study, we conducted a study to develop a product that can improve heating efficiency while maintaining proper indoor humidity by combining heat energy and moisture particles. The concept of humidification and heating at the same time, moisture particles generated in the humidifier pass through the heater, include thermal energy, and the moisture particles with thermal energy are diffused into the space by forced convection, thereby warming the entire space. In addition, the heating time is shortened as the feeling temperature is increased with the high relative humidity, and this has the effect that the heating cost in winter is reduced.

Evaluation of a Large Space Indoor Air Flow Controling System with a CFD code for Enhancing indoor Environment

  • Chung Yong-Hyun;Onishi Junji;Soeda Haruo;Kim Dong-Gyu
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • CFD code are used for numerically testing a new concept of large space air control system. A workshop with air-conditioners products lines and air-conditioned by several floor type air-containers is tested. The whole room air distribution is controlled by boosters installed in a middle height horizontal plane. First, calculated results are compared with measured data to confirm the validity and applicability of the prediction method. Next, the method is applied to case studies heating seasons. Results under some operating conditions show effectiveness in avoid the temperature stratification in winter.

Development of Amenity-Oriented Air Cleaning System for Railroad Passenger Cabin (객차용 청정시스템 개발)

  • Park, Duch-Shin;Cho, Young-Min;Kwon, Soon-Bark;Park, Eun-Young
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1234-1239
    • /
    • 2006
  • Because the indoors spaces of the passenger cabin is generally airtight to secure the safety of passengers and enhance the efficiency of the cabin air conditioning performances, the contamination pattern of them are largely similar to that of general indoor spaces. Therefore, continuous supply of outdoor air is required to keep the amenity of indoor space. Heating, ventilation, and air-conditioning (HVAC) system is composed of air cleaning filter, heater and air conditioned, blower and ducts. To achieve the clean indoor environment, an integrated control of each HVAC equipment are required. In this study, we developed the air cleaning system to enhance the amenity of the railroad passenger cabin.

  • PDF

Development of Air Cleaning System for Railroad Vehicles (차세대 객차용 청정시스템 개발)

  • Park, Duck-Shin;Cho, Young-Min;Kwon, Soon-Bark;Park, Eun-Young;Kim, Se-Young;Jung, Mi-Young
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2109-2113
    • /
    • 2008
  • As the standard of living is higher, the passengers using public transportations desire better qualities of environment as well as more comfortable indoor environment. In case of train, the passengers' comfort in passenger cabin is one of the most important elements to be competitive with other transport systems. The indoor air quality of the cabin should be managed properly, because many passengers travel for a long time in the small space of $144\;m^3$. For proper management of the air quality, the heating, ventilation and air conditioning (HVAC) system is required for the ventilation of the compartment. To maintain comfortable environment in the compartment, the automatic ventilation system is needed to exchange the indoor air with fresh air or clean indoor air. In this study, we investigated the indoor air quality (PM-10, $CO_2$, and VOCs) in the compartment of train. In addition, type and pattern of PM-10 has been analyzed through the clustering analysis. Based on the analysis, we could found that the fine particulate matters in the compartment can be a serious hazard to human. To control the concentration of PM-10 and $CO_2$ air cleaners were developed. Through this study, it is expected that people who take a train will be in a more comfortable environment.

  • PDF

Experimental Study on Natural Ventilation Performance of Double Facade System in Heating Period (난방기 중 이중외피 시스템의 자연환기 성능분석에 관한 실험적 연구)

  • Lee, Keon-Ho;Kim, Hyeon-Soo;Ko, Yung-Woo;Son, Young-Joo
    • KIEAE Journal
    • /
    • v.6 no.2
    • /
    • pp.43-50
    • /
    • 2006
  • A Double Facade System(DFS) is well known as an innovative solution of ecological facade in the west european countries. There are more than 200 various realized DFS in Germany. At the same time, the korean engineers have researched to find out the physical advantages of DFS in the moderate korean climate, which has a very humid summer with high temperature and a dry winter with low temperature. For example, the monthly mean temperature in Korea comes up to 28K, while that in Germany comes up to only 19K. That is, why a other solution of DFS is needed in Korea. This study has experimented the physical performance of the natural ventilation in the heating period. The preheating function of the cold air by DFS can improve no doubt the performance of the natural ventilation at the cold season as well as spring and autumn. The physical difference between single and double facade on natural ventilation has been tested at the newly constructed laboratory, which can turn $360^{\circ}$ to confirm the characteristic of a facade with the various directions. The results show the natural ventilation of the DFS has definitely much more comfortable than that of the single facade system. The air velocity of the inflow as well as the air temperature in the DFS provide a more stable condition than in the SFS. The theoretical limit(air velocity max 0.2m/s, air temperature min. $18^{\circ}C$, temperature difference between 100mm and 1700mm height max. 3K) on the indoor comfortableness doesn't go over in the DFS. On the other hand, the SFS showed an unstable condition with an excess of comfortableness limit on air velocity as well as temperature. In view of the researching results so far achieved, the research came to a conclusion, that the DFS can provide a more comfortable indoor condition by the preheating in the heating period than a SFS, and the period of natural ventilation in winter time could be definitely increased at the DFS.

Performance Analysis of Ground-Coupled Heat Pump System with Slinky-Type Horizontal Ground Heat Exchanger (수평형 지열 히트펌프 시스템의 냉난방 성능 분석)

  • Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.230-239
    • /
    • 2012
  • Ground-coupled heat pump (GCHP) systems utilize the immense renewable storage capacity of the ground as a heat source or sink to provide space heating, cooling, and domestic hot water. The main objective of the present study is to investigate the cooling and heating performance of a small scale GCHP system with horizontal ground heat exchanger (HGHE). In order to evaluate the performance, a water-to-air ground-source heat pump unit connected to a test room with a net floor area of 18.4 m2 and a volume of 64.4 m3 in the Korea Institute of Construction Technology ($37^{\circ}39'N$, $126^{\circ}48'E$) was designed and constructed. This GCHP system mainly consisted of slinky-type HGHE with a total length of 400 m, indoor heat pump, and measuring devices. The peak cooling and heating loads of the test room were 5.07 kW and 4.12 kW, respectively. The experimental results were obtained from March 15, 2011 to August 31, 2011 and the performance coefficients of the system were determined from the measured data. The overall seasonal performance factor (SPF) for cooling was 3.31 while the system delivered heating at a daily average performance coefficients of 2.82.