• Title/Summary/Keyword: indoor Plant

Search Result 252, Processing Time 0.026 seconds

Development of Vivorium, a new indoor horticultural ornamental plants via plant tissue culture techniques (식물조직배양 기술을 이용한 새로운 실내 원예 장식품인 비보리움(Vivorium)의 개발)

  • Hwang, Min Hee;Kim, Do Yeon;Cho, In Sun;Kim, Mi Hyung;Kwon, Hyun Sook;Kim, Jong Bo;Kim, Su Jung;Kim, Sun Hyung
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.179-185
    • /
    • 2021
  • Indoor gardening includes wall greening, terrariums, and flower arrangements. Among these types of indoor gardens, the terrarium is easy to access for the general public, but in Korea, because of the focus on esthetics, the original purpose of creating terrariums, which was to grow plants sustainably in an enclosed space, has been lost. In addition, miniaturization of plants is required to grow plants in an enclosed space. Since the available plant species suitable for a terrarium are limited, only plants such as succulents, cacti, and moss have been used. In this study, Bronze (X Graptosedum) was used, and these problems were solved using the following three methods: placement and growth of virus-free plants in the terrarium; extending the diversity of plants with minimal size that can be planted in terrariums; and reducing the price of in vitro plants with minimal size by achieving large-scale production. In particular, tissue-cultured succulents were developed into a Vivorium by replacing the tissue culture container and renewing the composition of the plant. This paper suggests a new indoor horticultural field, Vivorium, that can improve the current limitations of terrariums and make them more accessible to the general public. The introduction and popularization of new indoor gardening fields with the increase in single-person households and indoor activities in the Pandemic era can also improve psychological stability among people and in the society.

A Study on Indoor Air Pollutants Reduction Effect by Plants per Season (식물에 의한 계절별 실내공기오염물질 저감효과에 관한 연구)

  • Song, Jeong Eun;Kim, Yong Shik;Sohn, Jang Yeul
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • This study aims at examining the reduction of indoor air contaminants by plants placed in an indoor space. The effect of reducing the concentration of air contaminants by three species of plants was studied in a full-scale mock-up model. Field measurements were performed using Aglaonema brevispathum, Pachira aquatica and Ficus benjamiana which were verified as air-purifying plants by NASA. Their positions and amount were controlled. Two conditions for the amount of plants(10%, 5%) and positions(sun-shine, scatter) were used in two separate rooms whose dimensions are identical. The concentration of Volatile Organic Compounds(VOCs) was monitored three hours after the plants were placed and three days after the plants were placed. The variations of concentration of Benzene, Toluene, Etylbenzene, Xylene, Stylene and Formaldehyde, which are all known as the major elements of Volatile Organic Compounds were monitored. The more plants were used, the more a reduction of indoor air contaminants occurred. The effect of reducing the concentration of air contaminants increased when the amount of plants increased.

Development and Application of Real-Time Monitoring System for Efficient Operation of Workplace in Plant Equipment Maker (플랜트 기자재 업체의 효율적인 작업장 운영을 위한 실시간 모니터링 시스템 개발 및 적용)

  • Jeong, A-Reum;Cho, Chi-Woon;Baek, Tae-Hyun
    • IE interfaces
    • /
    • v.25 no.1
    • /
    • pp.114-126
    • /
    • 2012
  • This study describes a real-time location monitoring system developed for efficient operation of workplace in plant equipment maker. This monitoring system can be applied for indoor and outdoor working environment respectively. By using the real-time tracking system based on RTLS, it is possible to track worker's movement and location of working object under indoor working environment. For outdoor working environment, the real-time monitoring system based on IDGPS is applied for work safety and balanced workload. A case study is provided to evaluate the performance of the real-time monitoring system.

Growth Responses of Dieffenbachia amoena 'Marianne' and Begonia rex to Different Lengths and Numbers of Slitwalls in Drainless Containers for Green Technology (녹색기술 무배수구 용기깊이와 슬릿(Slit)차이에 따른 디펜바키아 마리안느와 렉스 베고니아의 생육반응)

  • Ju, Jin-Hee;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.931-938
    • /
    • 2012
  • The effects were investigated of different lengths and numbers of slitwalls in drainless containers on growth and change in soil moisture volumes on the growth of Diffenbachia amoena 'Marianne' and Begonia rex. Drainless containers filled with amended soil, with square shape ($240mm{\times}240mm$) were used, as well as three different sets of slitwalls (2, 4 or 8, respectively) in addition to non-slitwall containers. Two indoor foliage plants were grown in slitwall containers in randomized blocks with 3 replications in greenhouse conditions, from March to September, 2009. Soil moisture volumes per container were measured by weighing containers every 2 hours during the day. The change in soil moisture volumes showed considerable differences among slitwalls tested in comparison to control containers before and after twice-weekly irrigation. Particularly, the differences in the S2 (195mm, slitwall 2) containers were significantly greater than other containers tested. For Diffenbachia amoena 'Marianne', plant height, length of leaf, dry weight and fresh weight were higher with S2 containers than with those grown in other containers tested. The Begonia rex with the best quality in terms of plant height, length of leaf and width of leaf was grown in S8 (360mm, slitwall 8) containers. Particularly, statistical analysis has indicated that shoot fresh weights of Begonia rex grown in S8 were 3-fold higher than those grown in CS8 containers. The different results obtained within the two species led us to hypothesize a species-specific influence on indoor foliage plant performance. However, plants of both species grown in slitwall containers showed good results compared with plants grown in non-slitwall containers.

Applied Horticultural Biotechnology for the Mitigation of Indoor Air Pollution

  • Torpy, Fraser R.;Pettit, Thomas;Irga, Peter J.
    • Journal of People, Plants, and Environment
    • /
    • v.21 no.6
    • /
    • pp.445-460
    • /
    • 2018
  • Exposure to indoor air pollution is an emerging world-wide problem, with growing evidence that it is a major cause of morbidity worldwide. Whilst most indoor air pollutants are of outdoor origin, these combine with a range of indoor sourced pollutants that may lead to high pollutant levels indoors. The pollutants of greatest concern are volatile organic compounds (VOCs) and particulate matter (PM), both of which are associated with a range of serious health problems. Whilst current buildings usually use ventilation with outdoor air to remove these pollutants, botanical systems are gaining recognition as an effective alternative. Whilst many years research has shown that traditional potted plants and their substrates are capable of removing VOCs effectively, they are inefficient at removing PM, and are limited in their pollutant removal rates by the need for pollutants to diffuse to the active pollutant removal components of these systems. Active botanical biofiltration, using green wall systems combined with mechanical fans to increase pollutant exposure to the plants and substrate, show greatly increased rates of pollutant removal for both VOCs, PM and also carbon dioxide ($CO_2$). A developing body of research indicates that these systems can outperform existing technologies for indoor air pollutant removal, although further research is required before their use will become widespread. Whilst it is known that plant species selection and substrate characteristics can affect the performance of active botanical systems, optimal characteristics are yet to be identified. Once this research has been completed, it is proposed that active botanical biofiltration will provide a cheap and low energy use alternative to mechanical ventilations systems for the maintenance of indoor environmental quality.

The Effect of Phytofiltration System on the Improvement of Indoor Air Quality (식물을 이용한 실내공기환경 정화효과에 관한 연구)

  • Song, Jeong-Eun;Pang, Seung-Ki;Kim, Yong-Sik;Sohn, Jang-Yeul
    • KIEAE Journal
    • /
    • v.5 no.4
    • /
    • pp.3-8
    • /
    • 2005
  • The objective of this study is to examine the impact of the Phytofiltration system on the improvement of indoor air quality. Measurement was performed in a full-scale mock up model to examine the purification efficiency of air by plants. Seven species of plants, which were recommended by NASA, were used in measurements. Two species of plants that showed outstanding purifying effects were chosen for further measurements. The measurements were performed according to the positions and amounts of plants. Thermal environment, the concentration of Toluene and Formaldehyde were monitored. Ficus Benjamiana and Aglaonema brevispathum were excellent in diluting the concentration of contaminants. The effect of diluting concentration became better as the amount of plants increased. The reducing effect was the best when the plants were placed near window.

A Study on IT System Design for Eco-Amenity (식물을 이용한 실내공기정화용 정보시스템 설계에 대한 연구)

  • Noh, Yong-Deok;Lee, Jung-Hoon
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.971-976
    • /
    • 2006
  • Recently, people is interested in the indoor air pollution because of the well-being life. One of the effective way to remove the air pollutants is to use the eco-friendly houseplants. Eco-friendly houseplants absorb substances out of the stomata in their leaves and improve the indoor environment by plant emission such as phytochemical, anion, etc. In this paper, Eco-Amenity IT system is discussed which provide the data about the eco-friendly plants and related management information depending on the indoor air pollutants.

A Study on the Heating and Cooling Energy Load Analysis of the KNU Plant Factory (KNU 식물공장의 냉난방 에너지 부하 해석에 관한 연구)

  • Lee, Chan-Kyu;Kim, Woo-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1419-1426
    • /
    • 2012
  • The heating and cooling energy load of the KNU plant factory was analyzed using the DesignBuilder. Indoor temperature set-point, LED supplemental lighting schedule, LED heat gain, and type of double skin window were selected as simulation parameters. For the cases without LED supplemental lighting, the proper growth temperature of lettuce $20^{\circ}C$ was selected as indoor temperature set-point together with $15^{\circ}C$ and $25^{\circ}C$. The annual heating and cooling loads which are required to maintain a constant indoor temperature were calculated for all the given temperatures. The cooling load was highest for $15^{\circ}C$ and heating load was highest for $25^{\circ}C$. For the cases with LED supplemental lighting, the heating load was decreased and the cooling load was 6 times higher than the case without LED. In addition, night time lighting schedule gave better result as compared to day time lighting schedule. To investigate the effect of window type on annual energy load, 5 different double skin window types were selected. As the U-value of double skin window decreases, the heating load decreases and the cooling load increases. To optimize the total energy consumption in the plant factory, it is required to set a proper indoor temperature for the selected plantation crop, to select a suitable window type depending on LED heat gain, and to apply passive and active energy saving technology.

A Growth Responses of Indoor Ground Cover Plants according to a Light Source of Aritificial Light (인공광의 광원에 따른 실내 지피식물의 생육반응)

  • 방광자;박혜경;최경옥
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.5
    • /
    • pp.114-119
    • /
    • 2000
  • This study was carried out to obtain fundamental information of growth response of ground cover plants under artificial light quality at indoor. Aglaonema 'Silver Queen', Hedera helix L., Hoya carnosa 'Tricolor' and Saintpaulia ionantha 'Frances' were examined under a 400lux light intensity consisted of Mercury lamp, True-lite lamp, incandescent lamp, dark-room and sunlight indoor condition. A data analysis were performed by GLM, Duncan's multiple range test and mean score with SAS program. Results of experiments are as follows; 1. A plant growth status was better showed under the True-lite lamp than sunlight. 2. A Saintpaulia ionantha flower color was responded in the first place, the deep pinkish red color of Saintpaulia ionantha flower was obtained under Mercury lamp and "True-lite lamp", "sunlight", and incandescent lamp were follow. Flower numbers of Saintpaulia ionantha after 60 days tended to decrease under every artificial light quality. 3. Leaf length and leaf width were increased under True-lite lamp, but most of plants was not significantly affected by artificial light quality. 4. A stem length of Hedera helix was increased the highest rank under sunlight also, one of artificial light, the highest increase rank was showed under incandescent lamp. 5. Chlorophyll content was highly increased under Mercury lamp, but was responded poor under incandescent lamp.

  • PDF

A Study on Room Acoustic Field Analysis using Radiosity Method (라디오시티법을 이용한 실내 음향장 해석 연구)

  • Kim, Kookhyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.394-400
    • /
    • 2018
  • Various numerical methods have been adopted for indoor noise assessments of ship plant. Acoustical radiosity method is one of the high frequency approaches for acoustic field analysis, which assumes diffuse reflections by boundaries so that it could be efficiently applied to the acoustically diffused indoor space noise analysis. In this study, an acoustic field analysis program has been developed based on radiosity method, which could apply for acoustically large enclosures such as ship's indoor space. For this purpose, the procedure of the acoustical radiosity method has been summarized and implemented to an acoustic field analysis program using MATLAB. Numerical example for a rectangular indoor space has investigated validity of the implemented program. Steady state sound pressure levels calculated for a continuous acoustic source signal have shown good agreement with those by other solutions such as an analytic solution and a ray tracing method. Instantaneous sound pressure levels calculated for an impulsive acoustic signal have provided the clues of direct/reflected acoustic field and reverberation time.