DOI QR코드

DOI QR Code

Applied Horticultural Biotechnology for the Mitigation of Indoor Air Pollution

  • Torpy, Fraser R. (Plants and Environmental Quality Research Group, Faculty of Science, University of Technology Sydney) ;
  • Pettit, Thomas (Plants and Environmental Quality Research Group, Faculty of Science, University of Technology Sydney) ;
  • Irga, Peter J. (Plants and Environmental Quality Research Group, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney)
  • Published : 2018.12.31

Abstract

Exposure to indoor air pollution is an emerging world-wide problem, with growing evidence that it is a major cause of morbidity worldwide. Whilst most indoor air pollutants are of outdoor origin, these combine with a range of indoor sourced pollutants that may lead to high pollutant levels indoors. The pollutants of greatest concern are volatile organic compounds (VOCs) and particulate matter (PM), both of which are associated with a range of serious health problems. Whilst current buildings usually use ventilation with outdoor air to remove these pollutants, botanical systems are gaining recognition as an effective alternative. Whilst many years research has shown that traditional potted plants and their substrates are capable of removing VOCs effectively, they are inefficient at removing PM, and are limited in their pollutant removal rates by the need for pollutants to diffuse to the active pollutant removal components of these systems. Active botanical biofiltration, using green wall systems combined with mechanical fans to increase pollutant exposure to the plants and substrate, show greatly increased rates of pollutant removal for both VOCs, PM and also carbon dioxide ($CO_2$). A developing body of research indicates that these systems can outperform existing technologies for indoor air pollutant removal, although further research is required before their use will become widespread. Whilst it is known that plant species selection and substrate characteristics can affect the performance of active botanical systems, optimal characteristics are yet to be identified. Once this research has been completed, it is proposed that active botanical biofiltration will provide a cheap and low energy use alternative to mechanical ventilations systems for the maintenance of indoor environmental quality.

Keywords

Acknowledgement

Supported by : Centre for Technology in Water and Wastewater (CTWW)

References

  1. Andre, M. and P. Chagvardieff. 1997. CELSS research: interaction between space and terrestrial approaches in plant science. In: E. Goto, K. Kurata, M. Hayashi, and S. Sase (Eds.), Plant production in closed ecosystems(pp. 245-261): the international symposium on plant production in closed ecosystems held in Narita, Japan, August 26-29, 1996. Dordrecht, Netherlands: Springer.
  2. Bako-Biro, Z., P. Wargocki, C. J. Weschler, and P. O. Fanger. 2004. Effects of pollution from personal computers on perceived air quality, SBS symptoms and productivity in offices. Indoor Air 14:178-187. https://doi.org/10.1111/j.1600-0668.2004.00218.x
  3. Bari, M. A., M. MacNeill, W. B. Kindzierski, L. Wallace, M. E. Heroux, and A. J. Wheeler. 2014. Predictors of coarse particulate matter and associated endotoxin concentrations in residential environments. Atmos. Environ. 92:221-230. DOI:10.1016/j.atmosenv.2014.04.025
  4. Bernstein, J. A., N. Alexis, H. Bacchus, I. L. Bernstein, P. Fritz, E. Horner, N. Li, S. Mason, A. Nel, J. Oullette, K. Reijula, T. Reponen, J. Seltzer, A. Smith, and S. M. Tarlo. 2008. The health effects of non-industrial indoor air pollution. J. Allergy Clin. Immunol. 121(3):585-591. https://doi.org/10.1016/j.jaci.2007.10.045
  5. Buonanno, G., L. Morawska, and L. Stabile. 2009. Particle emission factors during cooking activities. Atmos. Environ. 43(20):3235-3242. DOI:10.1016/j.atmosenv.2009.03.044
  6. Burroughs, H. and S. J. Hansen. 2004. Managing indoor air quality. CRC Press.
  7. Colbeck, I. and Z. A. Nasir. 2010. Indoor air pollution. In: M. Lazaridis and I. Colbeck (Eds.), Human exposure to pollutants via dermal absorption and inhalation(pp. 41-72). Netherlands: Springer.
  8. Darlington, A., J. Dat, and M. Dixon. 2001. The biofiltration of indoor air: Air flux and temperature influences the removal of toluene, ethylbenzene, and xylene. Environ. Sci. Technol. 35(1):240-246. DOI: 10.1021/es0010507
  9. Delhomenie, M. C. and M. Heitz. 2003. Elimination of chlorobenzene vapors from air in a compost-based biofilter. J. Chem. Technol. Biotechnol. 78(5):588-595. DOI:10.1002/jctb.822
  10. Erdmann, C. A. and M. G. Apte. 2004. Mucous membrane and lower respiratory building related symptoms in relation to indoor carbon dioxide concentrations in the 100-building BASE dataset. Indoor Air. 14(Suppl 8):127-134. https://doi.org/10.1111/j.1600-0668.2004.00298.x
  11. Fiedler, N., R. Laumbach, K. Kelly-McNeil, P. Lioy, Z. H. Fan, J. Zhang, J. Ottenweller, P. Ohman-Strickland, and H. Kipen. 2005. Health effects of a mixture of indoor air volatile organics, their ozone oxidation products, and stress. Environ. Health Perspect. 113(11):1542-1548. https://doi.org/10.1289/ehp.8132
  12. Grayston, S. J. and C. E. Prescott. 2005. Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biol. Biochem. 37(6): 1157-1167. DOI: 10.1016/j.soilbio.2004.11.014
  13. Hutton, G. 2013. Air pollution: global damage costs from 1900 to 2050. In: B. Lomborg (Ed.), How much have global problems cost the world? A scorecard from 1900 to 2050(pp. 70-98). New York, USA: Cambridge University Press.
  14. Irga, P. J., F. R. Torpy, and M. D. Burchett. 2013 Can hydroculture be used to enhance the performance of indoor plants for the removal of air pollutants? Atmos. Environ. 77:267-271. https://doi.org/10.1016/j.atmosenv.2013.04.078
  15. Irga, P. J., N. J. Paull, P. Abdo, and F. R. Torpy. 2017. An assessment of the atmospheric particle removal efficiency of an in-room botanical biofilter system. Build. Environ. 115:281-290. DOI: 10.1016/j.buildenv.2017.01.035
  16. Jaakola, M., L. Yang, A. Ieromnimon, and J. Jaakola. 2007. Office work exposures and respiratory and sick building syndrome symptoms. Occup. Environ. Med. 64(3):178-184. DOI; 10.1136/oem.2005.024596
  17. Jafari, M.J., A. A. Khajevandi, S. A. M. Najarkola, M. S. Yekaninejad, M. A. Pourhoseingholi, L. Omidi, and S. Kalantary. 2015. Association of sick building syndrome with indoor air parameters. Tanaffos 14(1):55-62.
  18. Kim, K. J., M. I. Jeong, D. W. Lee, J. S. Song, H. D. Kim, E. H. Yoo, S. J. Jeong, S. W. Han, S. J. Kays, Y. W. Lim, and H. H. Kim. 2010. Variation in formaldehyde removal efficiency among indoor plant species. HortScience 45(10):1489-1495. https://doi.org/10.21273/HORTSCI.45.10.1489
  19. Kim, K. J., M. Khalekuzzaman, J. N. Suh, H. J. Kim, C. Shagol, H. H. Kim, and H. J. Kim. 2018. Phytoremediation of volatile organic compounds by indoor plants: a review. Hortic. Environ. Biotechnol. 59(2):143-157. DOI:10.1007/s13580-018-0032-0
  20. Kim, K. J., M. J. Kil, J. S. Song, E.H. Yoo, K. C. Son, and S. J. Kays. 2008. Efficiency of volatile formaldehyde removal by indoor plants: Contribution of aerial plant parts versus the root-zone. J. Am. Soc. Hortic. Sci. 133(4):521-526. https://doi.org/10.21273/JASHS.133.4.521
  21. Klepeis, N. E., W.C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S.C. Hern, and W. H. Engelmann. 2001. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 11(3):231-252. DOI:10.1038/sj.jea.7500165
  22. Lee, C. H., B. Choi, and M. Y. Chun. 2015. Stabilization of soil moisture and improvement of indoor air quality by a plant-biofilter integration system. Korean J. Hortic. Sci. Technol. 33(5):751-762. https://doi.org/10.7235/hort.2015.15027
  23. Llewellyn, D. and M. Dixon. 2011. Can plants really improve indoor air quality? In: M. Moo-Young (Ed.), Comprehensive biotechnology(2nd ed., pp. 331-338). Burlington: Academic Press.
  24. Maji, K. J., A. K. Dikshit, and A. Deshpande. 2017. Disability-adjusted life years and economic cost assessment of the health effects related to PM2.5 and PM10 pollution in Mumbai and Delhi, in India from 1991 to 2015. Environ. Sci. Pollut. Res. 24(5):4709-4730. https://doi.org/10.1007/s11356-016-8164-1
  25. Milton, D. K., P. M. Glencross, and M. D. Walters. 2000. Risk of sick leave associated with outdoor air supply rate, humidification, and occupant complaints. Indoor Air 10(4):212-221. https://doi.org/10.1034/j.1600-0668.2000.010004212.x
  26. Molloy, S. B., M. Cheng, I. E. Galbally, M. D. Keywood, S. J. Lawson, J. C. Powell, R. Gillett, E. Dunne, and P. W. Selleck. 2012. Indoor air quality in typical temperate zone Australian dwellings. Atmospheric environment. 54:400-407. DOI:10.1016/j.atmosenv.2012.02.031
  27. Morawska, L., C. He, J. Hitchins, K. Mengersen, and D. Gilbert. 2003. Characteristics of particle number and mass concentrations in residential houses in Brisbane, Australia. Atmos. Environ. 37(30):4195-4203. DOI:10.1016/S1352-2310(03)00566-1
  28. Pandey, A. K., M. Pandey, A. Mishra, S. M. Tiwary, and B. D. Tripathi. 2015. Air pollution tolerance index and anticipated performance index of some plant species for development of urban forest. Urban For. Urban Green. 14(4):866-871. DOI:10.1016/j.ufug.2015.08.001
  29. Paull, N. J., P. J. Irga, and F. R. Torpy. 2018. Active green wall plant health tolerance to diesel smoke exposure. Environ. Pollut. 240:448-456. DOI:10.1016/j.envpol.2018.05.004
  30. Pettit, T., P. J. Irga, and F. R. Torpy. 2018a. Functional green wall development for increasing air pollutant phytoremediation: Substrate development with coconut coir and activated carbon. J. Hazard. Mater. 360:594-603. DOI:10.1016/j.jhazmat.2018.08.048
  31. Pettit, T., P. J. Irga, and F. R. Torpy. 2018b. Towards practical indoor air phytoremediation: A review. Chemosphere 208:960-974. DOI:10.1016/j.chemosphere.2018.06.048
  32. Pettit, T., P. J. Irga, P. Abdo, and F. R. Torpy. 2017. Do the plants in functional green walls contribute to their ability to filter particulate matter? Build. Environ. 125:299-307. DOI: 10.1016/j.buildenv.2017.09.004
  33. Quang, T. N., C. He, L. Morawska, and L. D. Knibbs. 2013. Influence of ventilation and filtration on indoor particle concentrations in urban office buildings. Atmos. Environ. 79:41-52. DOI:10.1016/j.atmosenv.2013.06.009
  34. Redlich, C., J. Sparer, and M. Cullen. 1997. Sick-building syndrome. Lancet. 349(9057):1013-1016. DOI:10.1016/S0140-6736(96)07220-0
  35. Riley, W. J., T. E. McKone, A. C. K. Lai, and W. W. Nazaroff. 2002. Indoor particulate matter of outdoor origin: Importance of size-dependent removal mechanisms. Environ. Sci. Technol. 36(2):200-207. DOI:10.1021/es010723y
  36. Rohr, A. C. and R. E. Wyzga. 2012. Attributing health effects to individual particulate matter constituents. Atmos. Environ. 62:130-152. DOI:10.1016/j.atmosenv.2012.07.036
  37. Salisbury, F. B., J. I. Gitelson, and G. M. Lisovsky. 1997. Bios-3: Siberian experiments in bioregenerative life support: Attempts to purify air and grow food for space exploration in a sealed environment began in 1972. BioScience 47(9):575-585. DOI:10.2307/1313164
  38. Saebo, A., R. Popek, B. Nawrot, H. M. Hanslin, H. Gawronska, and S. W. Gawronski. 2012. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 427-428(0):347-354. DOI:10.1016/j.scitotenv.2012.03.084
  39. Seppanen, O. A. and W. J. Fisk. 2004. Summary of human responses to ventilation. Indoor Air 14(Suppl 7):102-118. https://doi.org/10.1111/j.1600-0668.2004.00279.x
  40. Seppanen, O., W. J. Fisk, and Q. H. Lei. 2006. Ventilation and performance in office work. Indoor Air 16(1):28-36. https://doi.org/10.1111/j.1600-0668.2005.00394.x
  41. Shaughnessy, R. J., U. Haverinen-Shaughnessy, A. Nevalainen, and D. Moschandreas. 2006. A preliminary study on the association between ventilation rates in classrooms and student performance. Indoor Air 16(6):465-468. https://doi.org/10.1111/j.1600-0668.2006.00440.x
  42. Soreanu, G. 2016. Biotechnologies for improving indoor air quality. In: Start-up creation (pp. 301-328). The Smart Eco-Efficient Built Environment. DOI:10.1016/B978-0-08-100546-0.00012-1
  43. Stapleton, E. and P. Ruiz-Rudolph. 2016. The potential for indoor ultrafine particle reduction using vegetation under laboratory conditions. Indoor Built Environ. 27(1):70-83.
  44. Su, Y. and Y. Liang. 2015. Foliar uptake and translocation of formaldehyde with Bracket plants (Chlorophytum comosum). J. Hazard. Mater. 291:120-128. DOI:10.1016/j.jhazmat.2015.03.001
  45. Torpy, F., N. Clements, M. Pollinger, A. Dengel, I. Mulvihill, C. He, and P. Irga. 2018a. Testing the single-pass VOC removal efficiency of an active green wall using methyl ethyl ketone (MEK). Air Qual. Atmos. Health 11(2):163-170. DOI:10.1007/s11869-017-0518-4
  46. Torpy, F. and M. Zavattarro. 2018b. Bench-study of green-wall plants for indoor air pollution reduction. J. Living Archit. 5(1):1-15.
  47. Torpy, F. R., M. Zavattaro, and P. J. Irga. 2017. Green wall technology for the phytoremediation of indoor air: a system for the reduction of high CO2 concentrations. Air Qual. Atmos. Health 10(5):575-585. https://doi.org/10.1007/s11869-016-0452-x
  48. Torpy, F. R., P. J. Irga, D. Moldovan, J. Tarran, M.D. Burchett. 2013. Characterization and biostimulation of benzene biodegradation in the potting-mix of indoor plants. J. Appl. Hortic. 15(1):10-15.
  49. Torpy, F. R., P. J. Irga, and M. D. Burchett. 2014. Profiling indoor plants for the amelioration of high CO2 concentrations. Urban For. Urban Green. 13(2):227-233. DOI:10.1016/j.ufug.2013.12.004
  50. Torpy, F. R., P. J. Irga, and M. D. Burchett. 2015. Reducing indoor air pollutants through biotechnology. In: F. Pacheco Torgal, J. Labirncha, M. Diamanti, C.P. Yu, and H. Lee(Eds.), Biotechnologies and Biomimetics for Civil Engineering(pp. 181-210). Springer International Publishing.
  51. Treesubsuntorn, C. and P. Thiravetyan. 2018. Botanical biofilter for indoor toluene removal and reduction of carbon dioxide emission under low light intensity by using mixed C3 and CAM plants. J. Clean. Prod. 194:94-100. DOI:10.1016/j.jclepro.2018.05.141
  52. Tunno, B. J., K. N. Shields, L. Cambal, S. Tripathy, F. Holguin, P. Lioy, and J. E. Clougherty. 2015. Indoor air sampling for fine particulate matter and black carbon in industrial communities in Pittsburgh. Sci. Total Environ. 536:108-115. https://doi.org/10.1016/j.scitotenv.2015.06.117
  53. Vaughan, T. L., C. Strader, S. Davis, and J. R. Daling. 1986. Formaldehyde and cancers of the pharynx, sinus and nasal cavity: II. Residential exposures. Int. J. Cancer 38(5):685-688. https://doi.org/10.1002/ijc.2910380511
  54. Wallace, L. A. 2001. Human exposure to volatile organic pollutants: implications for indoor air studies. Annu. Rev. Energy Environ. 26:269-301. DOI:10.1146/annurev.energy.26.1.269
  55. Wang, Z., J. Pei, and J. S. Zhang. 2014. Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification. J. Hazard. Mater. 280:235-243. DOI:10.1016/j.jhazmat.2014.07.059
  56. Wang, Z. and J.S. Zhang. 2011. Characterization and performance evaluation of a full-scale activated carbon-based dynamic botanical air filtration system for improving indoor air quality. Build. Environ. 46(3):758-768. DOI:10.1016/j.buildenv.2010.10.008
  57. Waring, M. S. 2016, October. Bio-walls and indoor houseplants: Facts and fictions. In: Microbiomes of the Built Environment: From Research to Application, Meeting #3. University of California, Irvine.
  58. Weerakkody, U., J. W. Dover, P. Mitchell, and K. Reiling. 2017. Particulate matter pollution capture by leaves of seventeen living wall species with special reference to rail-traffic at a metropolitan station. Urban For. Urban Green. 27:173-186. DOI:10.1016/j.ufug.2017.07.005
  59. Weschler, C. J. 2009. Changes in indoor pollutants since the 1950s. Atmos. Environ. 43(1):153-169. DOI:10.1016/j.atmosenv.2008.09.044
  60. Wheeler, R., C. Mackowiak, G. Stutte, J. Sager, N. Yorio, L. Ruffe, R. Fortson, T. Dreschel, W. Knott, and K. Corey. 1996. NASA's biomass production chamber: a testbed for bioregenerative life support studies. Adv. Space Res. 18(4-5):215-224.
  61. Wolkoff, P. 2013. Indoor air pollutants in office environments: assessment of comfort, health, and performance. Int. J. Hyg. Environ. Health 216(4):371-394. DOI:10.1016/j.ijheh.2012.08.001
  62. Wolverton, B. C., A. Johnson, and K. Bounds. 1989. A study of interior landscape plants for indoor air pollution abatement (NASA-TM-108061). Stennis Space Center, MS: National Aeronautics and Space Administration.
  63. Wolverton, B. C. and J. D. Wolverton. 1993. Plants and soil microorganisms: removal of formaldehyde, xylene, and ammonia from the indoor environment. J. Miss. Acad. Sci. 38(2):11-15.
  64. Wolverton, B., R. C. McDonald, and E. Watkins. 1984. Foliage plants for removing indoor air pollutants from energy-efficient homes. Economic Botany. 38(2):224-228. https://doi.org/10.1007/BF02858837
  65. Wood, R. A., M. D. Burchett, A. Alquezar, R. Orwell, J. Tarran, and F. Torpy. 2006. The potted-plant microcosm substantially reduces indoor air VOC pollution: I. Office field-study. Water Air Soil Pollut. 175(1):163-180. DOI:10.1007/s11270-006-9124-z
  66. Wood, R. A., R. L. Orwell, J. Tarran, F. Torpy, and M. Burchett. 2002. Potted-plant/growth media interactions and capacities in removal of volatiles from indoor air. J. Hortic. Sci. Biotechnol. 77(1):120-129. DOI:10.1080/14620316.2002.11511467
  67. World Health Organization. 2010. WHO guidelines for indoor air quality: selected pollutants. Geneva, Switzerland: WHO Press.
  68. World Health Organization. 2016. Global report on urban health: equitable, healthier cities for sustainable development. Geneva, Switzerland: WHO Press.
  69. Wyzga, R. E. and A. C. Rohr. 2015. Long-term particulate matter exposure: Attributing health effects to individual PM components. J. Air Waste Manag. Assoc. 65(5):523-543. DOI:10.1080/10962247.2015.1020396
  70. Xing, Y. F., Y. H. Xu, M. H. Shi, and Y. X. Lian. 2016. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 8(1):E69-E74. DOI:10.3978/j.issn.2072-1439.2016.01.19