Browse > Article
http://dx.doi.org/10.11628/ksppe.2018.21.6.445

Applied Horticultural Biotechnology for the Mitigation of Indoor Air Pollution  

Torpy, Fraser R. (Plants and Environmental Quality Research Group, Faculty of Science, University of Technology Sydney)
Pettit, Thomas (Plants and Environmental Quality Research Group, Faculty of Science, University of Technology Sydney)
Irga, Peter J. (Plants and Environmental Quality Research Group, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney)
Publication Information
Journal of People, Plants, and Environment / v.21, no.6, 2018 , pp. 445-460 More about this Journal
Abstract
Exposure to indoor air pollution is an emerging world-wide problem, with growing evidence that it is a major cause of morbidity worldwide. Whilst most indoor air pollutants are of outdoor origin, these combine with a range of indoor sourced pollutants that may lead to high pollutant levels indoors. The pollutants of greatest concern are volatile organic compounds (VOCs) and particulate matter (PM), both of which are associated with a range of serious health problems. Whilst current buildings usually use ventilation with outdoor air to remove these pollutants, botanical systems are gaining recognition as an effective alternative. Whilst many years research has shown that traditional potted plants and their substrates are capable of removing VOCs effectively, they are inefficient at removing PM, and are limited in their pollutant removal rates by the need for pollutants to diffuse to the active pollutant removal components of these systems. Active botanical biofiltration, using green wall systems combined with mechanical fans to increase pollutant exposure to the plants and substrate, show greatly increased rates of pollutant removal for both VOCs, PM and also carbon dioxide ($CO_2$). A developing body of research indicates that these systems can outperform existing technologies for indoor air pollutant removal, although further research is required before their use will become widespread. Whilst it is known that plant species selection and substrate characteristics can affect the performance of active botanical systems, optimal characteristics are yet to be identified. Once this research has been completed, it is proposed that active botanical biofiltration will provide a cheap and low energy use alternative to mechanical ventilations systems for the maintenance of indoor environmental quality.
Keywords
active green walls; indoor air quality; phytoremediation; potted plants; volatile organic compounds;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Quang, T. N., C. He, L. Morawska, and L. D. Knibbs. 2013. Influence of ventilation and filtration on indoor particle concentrations in urban office buildings. Atmos. Environ. 79:41-52. DOI:10.1016/j.atmosenv.2013.06.009   DOI
2 Redlich, C., J. Sparer, and M. Cullen. 1997. Sick-building syndrome. Lancet. 349(9057):1013-1016. DOI:10.1016/S0140-6736(96)07220-0   DOI
3 Riley, W. J., T. E. McKone, A. C. K. Lai, and W. W. Nazaroff. 2002. Indoor particulate matter of outdoor origin: Importance of size-dependent removal mechanisms. Environ. Sci. Technol. 36(2):200-207. DOI:10.1021/es010723y   DOI
4 Rohr, A. C. and R. E. Wyzga. 2012. Attributing health effects to individual particulate matter constituents. Atmos. Environ. 62:130-152. DOI:10.1016/j.atmosenv.2012.07.036   DOI
5 Bari, M. A., M. MacNeill, W. B. Kindzierski, L. Wallace, M. E. Heroux, and A. J. Wheeler. 2014. Predictors of coarse particulate matter and associated endotoxin concentrations in residential environments. Atmos. Environ. 92:221-230. DOI:10.1016/j.atmosenv.2014.04.025   DOI
6 Bernstein, J. A., N. Alexis, H. Bacchus, I. L. Bernstein, P. Fritz, E. Horner, N. Li, S. Mason, A. Nel, J. Oullette, K. Reijula, T. Reponen, J. Seltzer, A. Smith, and S. M. Tarlo. 2008. The health effects of non-industrial indoor air pollution. J. Allergy Clin. Immunol. 121(3):585-591.   DOI
7 Buonanno, G., L. Morawska, and L. Stabile. 2009. Particle emission factors during cooking activities. Atmos. Environ. 43(20):3235-3242. DOI:10.1016/j.atmosenv.2009.03.044   DOI
8 Burroughs, H. and S. J. Hansen. 2004. Managing indoor air quality. CRC Press.
9 Colbeck, I. and Z. A. Nasir. 2010. Indoor air pollution. In: M. Lazaridis and I. Colbeck (Eds.), Human exposure to pollutants via dermal absorption and inhalation(pp. 41-72). Netherlands: Springer.
10 Darlington, A., J. Dat, and M. Dixon. 2001. The biofiltration of indoor air: Air flux and temperature influences the removal of toluene, ethylbenzene, and xylene. Environ. Sci. Technol. 35(1):240-246. DOI: 10.1021/es0010507   DOI
11 Shaughnessy, R. J., U. Haverinen-Shaughnessy, A. Nevalainen, and D. Moschandreas. 2006. A preliminary study on the association between ventilation rates in classrooms and student performance. Indoor Air 16(6):465-468.   DOI
12 Salisbury, F. B., J. I. Gitelson, and G. M. Lisovsky. 1997. Bios-3: Siberian experiments in bioregenerative life support: Attempts to purify air and grow food for space exploration in a sealed environment began in 1972. BioScience 47(9):575-585. DOI:10.2307/1313164   DOI
13 Saebo, A., R. Popek, B. Nawrot, H. M. Hanslin, H. Gawronska, and S. W. Gawronski. 2012. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 427-428(0):347-354. DOI:10.1016/j.scitotenv.2012.03.084   DOI
14 Seppanen, O. A. and W. J. Fisk. 2004. Summary of human responses to ventilation. Indoor Air 14(Suppl 7):102-118.   DOI
15 Soreanu, G. 2016. Biotechnologies for improving indoor air quality. In: Start-up creation (pp. 301-328). The Smart Eco-Efficient Built Environment. DOI:10.1016/B978-0-08-100546-0.00012-1   DOI
16 Torpy, F., N. Clements, M. Pollinger, A. Dengel, I. Mulvihill, C. He, and P. Irga. 2018a. Testing the single-pass VOC removal efficiency of an active green wall using methyl ethyl ketone (MEK). Air Qual. Atmos. Health 11(2):163-170. DOI:10.1007/s11869-017-0518-4   DOI
17 Delhomenie, M. C. and M. Heitz. 2003. Elimination of chlorobenzene vapors from air in a compost-based biofilter. J. Chem. Technol. Biotechnol. 78(5):588-595. DOI:10.1002/jctb.822   DOI
18 Erdmann, C. A. and M. G. Apte. 2004. Mucous membrane and lower respiratory building related symptoms in relation to indoor carbon dioxide concentrations in the 100-building BASE dataset. Indoor Air. 14(Suppl 8):127-134.   DOI
19 Stapleton, E. and P. Ruiz-Rudolph. 2016. The potential for indoor ultrafine particle reduction using vegetation under laboratory conditions. Indoor Built Environ. 27(1):70-83.
20 Su, Y. and Y. Liang. 2015. Foliar uptake and translocation of formaldehyde with Bracket plants (Chlorophytum comosum). J. Hazard. Mater. 291:120-128. DOI:10.1016/j.jhazmat.2015.03.001   DOI
21 Irga, P. J., F. R. Torpy, and M. D. Burchett. 2013 Can hydroculture be used to enhance the performance of indoor plants for the removal of air pollutants? Atmos. Environ. 77:267-271.   DOI
22 Fiedler, N., R. Laumbach, K. Kelly-McNeil, P. Lioy, Z. H. Fan, J. Zhang, J. Ottenweller, P. Ohman-Strickland, and H. Kipen. 2005. Health effects of a mixture of indoor air volatile organics, their ozone oxidation products, and stress. Environ. Health Perspect. 113(11):1542-1548.   DOI
23 Grayston, S. J. and C. E. Prescott. 2005. Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biol. Biochem. 37(6): 1157-1167. DOI: 10.1016/j.soilbio.2004.11.014   DOI
24 Hutton, G. 2013. Air pollution: global damage costs from 1900 to 2050. In: B. Lomborg (Ed.), How much have global problems cost the world? A scorecard from 1900 to 2050(pp. 70-98). New York, USA: Cambridge University Press.
25 Irga, P. J., N. J. Paull, P. Abdo, and F. R. Torpy. 2017. An assessment of the atmospheric particle removal efficiency of an in-room botanical biofilter system. Build. Environ. 115:281-290. DOI: 10.1016/j.buildenv.2017.01.035   DOI
26 Jaakola, M., L. Yang, A. Ieromnimon, and J. Jaakola. 2007. Office work exposures and respiratory and sick building syndrome symptoms. Occup. Environ. Med. 64(3):178-184. DOI; 10.1136/oem.2005.024596   DOI
27 Torpy, F. R., P. J. Irga, and M. D. Burchett. 2014. Profiling indoor plants for the amelioration of high CO2 concentrations. Urban For. Urban Green. 13(2):227-233. DOI:10.1016/j.ufug.2013.12.004   DOI
28 Torpy, F. and M. Zavattarro. 2018b. Bench-study of green-wall plants for indoor air pollution reduction. J. Living Archit. 5(1):1-15.
29 Torpy, F. R., M. Zavattaro, and P. J. Irga. 2017. Green wall technology for the phytoremediation of indoor air: a system for the reduction of high CO2 concentrations. Air Qual. Atmos. Health 10(5):575-585.   DOI
30 Torpy, F. R., P. J. Irga, D. Moldovan, J. Tarran, M.D. Burchett. 2013. Characterization and biostimulation of benzene biodegradation in the potting-mix of indoor plants. J. Appl. Hortic. 15(1):10-15.
31 Torpy, F. R., P. J. Irga, and M. D. Burchett. 2015. Reducing indoor air pollutants through biotechnology. In: F. Pacheco Torgal, J. Labirncha, M. Diamanti, C.P. Yu, and H. Lee(Eds.), Biotechnologies and Biomimetics for Civil Engineering(pp. 181-210). Springer International Publishing.
32 Wang, Z. and J.S. Zhang. 2011. Characterization and performance evaluation of a full-scale activated carbon-based dynamic botanical air filtration system for improving indoor air quality. Build. Environ. 46(3):758-768. DOI:10.1016/j.buildenv.2010.10.008   DOI
33 Treesubsuntorn, C. and P. Thiravetyan. 2018. Botanical biofilter for indoor toluene removal and reduction of carbon dioxide emission under low light intensity by using mixed C3 and CAM plants. J. Clean. Prod. 194:94-100. DOI:10.1016/j.jclepro.2018.05.141   DOI
34 Tunno, B. J., K. N. Shields, L. Cambal, S. Tripathy, F. Holguin, P. Lioy, and J. E. Clougherty. 2015. Indoor air sampling for fine particulate matter and black carbon in industrial communities in Pittsburgh. Sci. Total Environ. 536:108-115.   DOI
35 Vaughan, T. L., C. Strader, S. Davis, and J. R. Daling. 1986. Formaldehyde and cancers of the pharynx, sinus and nasal cavity: II. Residential exposures. Int. J. Cancer 38(5):685-688.   DOI
36 Wallace, L. A. 2001. Human exposure to volatile organic pollutants: implications for indoor air studies. Annu. Rev. Energy Environ. 26:269-301. DOI:10.1146/annurev.energy.26.1.269   DOI
37 Wang, Z., J. Pei, and J. S. Zhang. 2014. Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification. J. Hazard. Mater. 280:235-243. DOI:10.1016/j.jhazmat.2014.07.059   DOI
38 Waring, M. S. 2016, October. Bio-walls and indoor houseplants: Facts and fictions. In: Microbiomes of the Built Environment: From Research to Application, Meeting #3. University of California, Irvine.
39 Weerakkody, U., J. W. Dover, P. Mitchell, and K. Reiling. 2017. Particulate matter pollution capture by leaves of seventeen living wall species with special reference to rail-traffic at a metropolitan station. Urban For. Urban Green. 27:173-186. DOI:10.1016/j.ufug.2017.07.005   DOI
40 Weschler, C. J. 2009. Changes in indoor pollutants since the 1950s. Atmos. Environ. 43(1):153-169. DOI:10.1016/j.atmosenv.2008.09.044   DOI
41 Wolverton, B. C. and J. D. Wolverton. 1993. Plants and soil microorganisms: removal of formaldehyde, xylene, and ammonia from the indoor environment. J. Miss. Acad. Sci. 38(2):11-15.
42 Wheeler, R., C. Mackowiak, G. Stutte, J. Sager, N. Yorio, L. Ruffe, R. Fortson, T. Dreschel, W. Knott, and K. Corey. 1996. NASA's biomass production chamber: a testbed for bioregenerative life support studies. Adv. Space Res. 18(4-5):215-224.
43 Wolkoff, P. 2013. Indoor air pollutants in office environments: assessment of comfort, health, and performance. Int. J. Hyg. Environ. Health 216(4):371-394. DOI:10.1016/j.ijheh.2012.08.001   DOI
44 Wolverton, B. C., A. Johnson, and K. Bounds. 1989. A study of interior landscape plants for indoor air pollution abatement (NASA-TM-108061). Stennis Space Center, MS: National Aeronautics and Space Administration.
45 Wolverton, B., R. C. McDonald, and E. Watkins. 1984. Foliage plants for removing indoor air pollutants from energy-efficient homes. Economic Botany. 38(2):224-228.   DOI
46 Wood, R. A., M. D. Burchett, A. Alquezar, R. Orwell, J. Tarran, and F. Torpy. 2006. The potted-plant microcosm substantially reduces indoor air VOC pollution: I. Office field-study. Water Air Soil Pollut. 175(1):163-180. DOI:10.1007/s11270-006-9124-z   DOI
47 Wood, R. A., R. L. Orwell, J. Tarran, F. Torpy, and M. Burchett. 2002. Potted-plant/growth media interactions and capacities in removal of volatiles from indoor air. J. Hortic. Sci. Biotechnol. 77(1):120-129. DOI:10.1080/14620316.2002.11511467   DOI
48 World Health Organization. 2010. WHO guidelines for indoor air quality: selected pollutants. Geneva, Switzerland: WHO Press.
49 Wyzga, R. E. and A. C. Rohr. 2015. Long-term particulate matter exposure: Attributing health effects to individual PM components. J. Air Waste Manag. Assoc. 65(5):523-543. DOI:10.1080/10962247.2015.1020396   DOI
50 World Health Organization. 2016. Global report on urban health: equitable, healthier cities for sustainable development. Geneva, Switzerland: WHO Press.
51 Xing, Y. F., Y. H. Xu, M. H. Shi, and Y. X. Lian. 2016. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 8(1):E69-E74. DOI:10.3978/j.issn.2072-1439.2016.01.19
52 Seppanen, O., W. J. Fisk, and Q. H. Lei. 2006. Ventilation and performance in office work. Indoor Air 16(1):28-36.   DOI
53 Kim, K. J., M. J. Kil, J. S. Song, E.H. Yoo, K. C. Son, and S. J. Kays. 2008. Efficiency of volatile formaldehyde removal by indoor plants: Contribution of aerial plant parts versus the root-zone. J. Am. Soc. Hortic. Sci. 133(4):521-526.   DOI
54 Jafari, M.J., A. A. Khajevandi, S. A. M. Najarkola, M. S. Yekaninejad, M. A. Pourhoseingholi, L. Omidi, and S. Kalantary. 2015. Association of sick building syndrome with indoor air parameters. Tanaffos 14(1):55-62.
55 Kim, K. J., M. I. Jeong, D. W. Lee, J. S. Song, H. D. Kim, E. H. Yoo, S. J. Jeong, S. W. Han, S. J. Kays, Y. W. Lim, and H. H. Kim. 2010. Variation in formaldehyde removal efficiency among indoor plant species. HortScience 45(10):1489-1495.   DOI
56 Kim, K. J., M. Khalekuzzaman, J. N. Suh, H. J. Kim, C. Shagol, H. H. Kim, and H. J. Kim. 2018. Phytoremediation of volatile organic compounds by indoor plants: a review. Hortic. Environ. Biotechnol. 59(2):143-157. DOI:10.1007/s13580-018-0032-0   DOI
57 Klepeis, N. E., W.C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S.C. Hern, and W. H. Engelmann. 2001. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 11(3):231-252. DOI:10.1038/sj.jea.7500165   DOI
58 Maji, K. J., A. K. Dikshit, and A. Deshpande. 2017. Disability-adjusted life years and economic cost assessment of the health effects related to PM2.5 and PM10 pollution in Mumbai and Delhi, in India from 1991 to 2015. Environ. Sci. Pollut. Res. 24(5):4709-4730.   DOI
59 Lee, C. H., B. Choi, and M. Y. Chun. 2015. Stabilization of soil moisture and improvement of indoor air quality by a plant-biofilter integration system. Korean J. Hortic. Sci. Technol. 33(5):751-762.   DOI
60 Llewellyn, D. and M. Dixon. 2011. Can plants really improve indoor air quality? In: M. Moo-Young (Ed.), Comprehensive biotechnology(2nd ed., pp. 331-338). Burlington: Academic Press.
61 Pandey, A. K., M. Pandey, A. Mishra, S. M. Tiwary, and B. D. Tripathi. 2015. Air pollution tolerance index and anticipated performance index of some plant species for development of urban forest. Urban For. Urban Green. 14(4):866-871. DOI:10.1016/j.ufug.2015.08.001   DOI
62 Milton, D. K., P. M. Glencross, and M. D. Walters. 2000. Risk of sick leave associated with outdoor air supply rate, humidification, and occupant complaints. Indoor Air 10(4):212-221.   DOI
63 Molloy, S. B., M. Cheng, I. E. Galbally, M. D. Keywood, S. J. Lawson, J. C. Powell, R. Gillett, E. Dunne, and P. W. Selleck. 2012. Indoor air quality in typical temperate zone Australian dwellings. Atmospheric environment. 54:400-407. DOI:10.1016/j.atmosenv.2012.02.031   DOI
64 Morawska, L., C. He, J. Hitchins, K. Mengersen, and D. Gilbert. 2003. Characteristics of particle number and mass concentrations in residential houses in Brisbane, Australia. Atmos. Environ. 37(30):4195-4203. DOI:10.1016/S1352-2310(03)00566-1   DOI
65 Pettit, T., P. J. Irga, P. Abdo, and F. R. Torpy. 2017. Do the plants in functional green walls contribute to their ability to filter particulate matter? Build. Environ. 125:299-307. DOI: 10.1016/j.buildenv.2017.09.004   DOI
66 Paull, N. J., P. J. Irga, and F. R. Torpy. 2018. Active green wall plant health tolerance to diesel smoke exposure. Environ. Pollut. 240:448-456. DOI:10.1016/j.envpol.2018.05.004   DOI
67 Pettit, T., P. J. Irga, and F. R. Torpy. 2018a. Functional green wall development for increasing air pollutant phytoremediation: Substrate development with coconut coir and activated carbon. J. Hazard. Mater. 360:594-603. DOI:10.1016/j.jhazmat.2018.08.048   DOI
68 Pettit, T., P. J. Irga, and F. R. Torpy. 2018b. Towards practical indoor air phytoremediation: A review. Chemosphere 208:960-974. DOI:10.1016/j.chemosphere.2018.06.048   DOI
69 Bako-Biro, Z., P. Wargocki, C. J. Weschler, and P. O. Fanger. 2004. Effects of pollution from personal computers on perceived air quality, SBS symptoms and productivity in offices. Indoor Air 14:178-187.   DOI
70 Andre, M. and P. Chagvardieff. 1997. CELSS research: interaction between space and terrestrial approaches in plant science. In: E. Goto, K. Kurata, M. Hayashi, and S. Sase (Eds.), Plant production in closed ecosystems(pp. 245-261): the international symposium on plant production in closed ecosystems held in Narita, Japan, August 26-29, 1996. Dordrecht, Netherlands: Springer.