• Title/Summary/Keyword: indium tin oxide thin film (ITO)

Search Result 230, Processing Time 0.024 seconds

Indium Tin Oxide (ITO) Nano Thin Films Deposited by a Modulated Pulse Sputtering at Room Temperature (모듈레이티드 펄스 스퍼터링으로 상온 증착한 Indium-Tin-Oxide (ITO) 나노 박막)

  • You, Younggoon;Jeong, Jinyong;Joo, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.109-115
    • /
    • 2014
  • High power impulse magnetron sputtering (HIPIMS), also known as the technology is called peak power density in a short period, you can get high, so high ionization sputtering rate can make. Higher ionization of sputtered species to a variety of coating materials conventional in the field of improving the characteristics and self-assisted ion thin film deposition process, which contributes to a superior being. HIPIMS at the same power, but the deposition speed is slow in comparison with DC disadvantages. Since recently as a replacement for HIPIMS modulated pulse power (MPP) has been developed. This ionization rate of the sputtered species can increase the deposition rate is lowered and at the same time to overcome the problems to be reported. The differences between the MPP and the HIPIMS is a simple single pulse with a HIPIMS whereas, MPP is 3 ms in pulse length is adjustable, with the full set of multi-pulses within the pulse period and the pulse is applied can be micro advantages. In this experiment, $In_2O_3$ : $SnO_2$ composition ratio of 9 : 1 wt% target was used, Ar : $O_2$ flow rate ratio is 4.8 to 13.0% of the rate of deposition was carried out at room temperature. Ar 40 sccm and the flow rate of $O_2$ and then fixed 2 ~ 6 sccm was compared against that. The thickness of the thin film deposition is fixed at 60 nm, when the partial pressure of oxygen at 9.1%, the specific resistance value of $4.565{\times}10^{-4}{\Omega}cm$, transmittance 86.6%, mobility $32.29cm^2/Vs$ to obtain the value.

Properties of IZTO Thin Film prepared by the Hetero-Target sputtering system (ITO-IZO 이종 타겟 이용한 Indium Zinc Tin Oxide(IZTO)박막의 특성)

  • Kim, Dae-Hyun;Rim, You-Seong;Jang, Kyung-Uk;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.439-440
    • /
    • 2008
  • Indium Zinc Tin Oxide (IZTO) thin films for transparent thin film transistor (TTFT) were deposited on glass substrate at room temperature by facing targets sputtering (FTS). The FTS system was designed to array two targets facing each other and forms the high- density plasma between. Two different kinds of targets were installed on FTS system. One is ITO ($In_2O_3$ 90wt.%, $SnO_2$ 10wt.%), the other is IZO($In_2O_3$ 90wt%, ZnO 10wt%). The conductive and optical properties of IZTO thin film is determined depending on variation of DC power and working pressure. Therefore, IZTO thin films were prepared with different DC power and working pressure. As-deposited IZTO thin films were investigated by a UV/VIS spectrometer, an X-ray diffractometer (XRD), a scanning electron microscopy (SEM), a Hall Effect measurement system. As a result, all IZTO thin films deposited on glass substrate showed over 80% of transmittance in visible range (400~800 nm) at $O_2$ gas flow rate. We could obtain IZTO thin films with the lowest resistivity $5.67\times10^{-4}$ [$\Omega{\cdot}cm$] at $O_2$ gas flow rate 0.4 [sccm).

  • PDF

Electrical Properties of the (Ba,Sr)$TiO_3$Thin Films Prepared by Sol-Gel Method (Sol-Gel법으로 제조한 (Ba,Sr)$TiO_3$박막의 전기적 특성)

  • 이영희;이문기;정장호;류기원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.592-597
    • /
    • 2000
  • In this study (B $a_{0.5}$/S $r_{0.5}$)Ti $O_3$[BST(50/50)] ceramic thin films were prepared by the Sol-Gel method BST(50/50) stock solution was made and spin-coated on the Indium Tin Oxide(ITO)/glass substrate at 4000 rpm for 30 seconds. The coated films were dried at 35$0^{\circ}C$ for 10 minutes and annealed at 650~75$0^{\circ}C$ for 1 hour. The microstructural properties of the BST(50/50) thin film were studied by the XRD and AFM. The ferroelectric perovskite phase was formed at the annealing condition of 75$0^{\circ}C$ for 1 hour. Dielectric constant and loss of this thin were 370, 3.7% at room temperature respectively. The polarization switching voltage showed the good value of 3V. The leakage current density of the BST(50/50) thin film was 10$^{-7A}$c $m^2$with applied voltage of 1.5V. BST(50/50) thin film capacitors having good dielectric and electrical properties are expecting for the application to the dielectric material of DRAM.RAM.M.

  • PDF

Measurement of Step Difference using Digital Holography of ITO Thin Film Fabricated by Sputtering Method (스퍼터링 공법으로 제작한 ITO 박막의 디지털 홀로그래피를 이용한 단차에 대한 측정)

  • Jung, Hyun Il;Shin, Ju Yeop;Park, Jong Hyun;Jung, Hyunchul;Kim, Kyeong-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.84-89
    • /
    • 2021
  • Indium tin oxide (ITO) transparent electrodes, which are used to manufacture organic light-emitting diodes, are used in light-emitting surface electrodes of display EL panels such as cell phones and TVs, liquid crystal panels, transparent switches, and plane heating elements. ITO is a major component that consists of indium and tin and is advantageous in terms of obtaining sheet resistance and light transmittance in a thin film. However, the optical performance of devices decreases with an increase in its thickness. A digital holography system was constructed and measured for the step measurement of the ITO thin film, and the reliability of the technique was verified by comparing the FE-SEM measurement results. The error rate of the step difference measurement was within ±5%. This result demonstrated that this technique is useful for applications in advanced MEMS and NEMS industrial fields.

Effects on Heat Treatment Methods in Indium-Tin-Oxide Films by DC Magnetron Sputter of Powder Target

  • Kim, H.H.;Shin, J.H.;Baek, J.Y.;Shin, S.H.;Park, K.J.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.1
    • /
    • pp.22-26
    • /
    • 2001
  • ITO (Indium-tin-oxide) thin films were deposited on glass substrates by a dc magnetron sputtering system using ITO powder target. The methods of heat treatment are important factor to obtain high quality ITO films with low electrical resistivity and good optical transmittance. Therefore, both methods of the substrate temperature and post-deposition annealing temperature have been compared on the film structural, electrical and optical properties. A preferred orientations shifts from (411) to (222) peak at annealing temperature of 200$\^{C}$. Minimum resistivity of ITO film is approximately 8.7$\times$10$\^$-4/ Ωcm at substrate temperature of 450$\^{C}$. Optical transmittances at post annealing temperature above 200$\^{C}$ are 90%. As a result, the minimum value of annealing temperature that is required for the recrystallization of as-deposited ITo thin films is 200$\^{C}$.

  • PDF

Ni-assisted growth of transparent and single crystalline indium-tin-oxide nanowires

  • Kim, Hyeon-Gi;Kim, Jun-Dong;Park, Hyeong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.259-259
    • /
    • 2015
  • Single crystalline indium-tin-oxide (ITO) nanowires (NWs) were grown by sputtering method. A thin Ni film of 5 nm was deposited before ITO sputtering. Thermal treatment forms Ni nanoparticles, which act as templates to diffuse Ni into the sputtered ITO layer to grow single crystalline ITO NWs. This Ni diffusion through an ITO NW was investigated by transmission electron microscope to observe the Ni-tip sitting on a single crystalline ITO NW. Meanwhile, a single crystalline ITO structure was found at bottom and body part of a single ITO NW without remaining of Ni atoms. This indicates the Ni atoms diffuse through the oxygen vacancies of ITO structure. Rapid thermal process (RTP) applied to generate an initial stage of a formation of Ni nanoparticles with variation in time periods to demonstrate the existence of an optimum condition to initiate ITO NW growth. Modulation in ITO sputtering condition was applied to verify the ITO NW growth or the ITO film growth. The Ni-assisted grown ITO layer has an improved electrical conductivity while maintaining a similar transmittance value to that of a single ITO layer. Electrically conductive and optically transparent nanowire-coated surface morphology would provide a great opportunity for various photoelectric devices.

  • PDF

Study on IZTO and ITO Films Deposited on PI Substrate by Pulsed DC Magnetron Sputtering System

  • Ko, Yoon-Duk;Kim, Joo-Yeob;Joung, Hong-Chan;Lee, Chang-Hun;Bae, Jung-Ae;Choi, Byung-Hyun;Ji, Mi-Jung;Kim, Young-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.93-93
    • /
    • 2011
  • The Indium Zinc Tin Oxide (IZTO) and Indium Tin Oxide (ITO) thin films are grown on PI substrate at different substrate temperature by pulsed DC magnetron sputtering with a sintered ceramic target of IZTO (In2O3 70 wt.%, ZnO 15 wt.%, SnO2 15 wt.%) and ITO (In2O3 90wt.%, SnO2 10wt.%). The structural, electrical, and optical properties are investigated. The IZTO thin films deposited at low temperature showed relatively low electrical resistivity compared to ITO thin films deposited at low temperature. As a result, we could prepare the IZTO thin films with the resistivity as low as $5.6{\times}10^{-4}({\Omega}{\cdot}m)$. Both of the films deposited on PI substrate showed an average transmittance over 80% in visible range (400.800nm). Overall, IZTO thin film is a promising candidate as an alternative TCO material to ITO in flexible and OLED devices.

  • PDF

Quality Management of ITO Thin Film for OLED Based on Relationship of Fabrication and Characteristics (OLED용 ITO박막의 공정조건과 품질특성 추론에 근거한 품질관리)

  • Seo, Jeong-Min;Park, Keun-Young;Lee, Sang-Ryong;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 2008
  • Recently, research on a flat panel display(FPD) has focused on organic light-emitting display(OLED) which has wide angle of view, high contrast ratio and low power consumption. ITO(Indium-Tin-Oxide) films are the most widely used material as a transparent electrode of OLED and also in many other display devices like LCD or PDP. The performance and efficiency of OLED is related to the surface condition of ITO coated glass substrate. The typical surface defect of glass substrate is measured for electric characteristics and physical condition for transmittance and roughness. Since ITO coated glass substrate can be destroyed for inspection about surface roughness, sheet resistance, film thickness and transmittance, precise fabrication condition should be made based on the estimated relationship. In this paper, ITO films were prepared on the commercial glass substrate by the Ion-Plating method changing the partial pressure of gas(Ar, 02) and the chamber temperature between $200^{\circ}C$ and $300^{\circ}C$. The characteristics of films were examined by the 4-point probe, supersonic thickness measurement, transmittance measurement and AFM. We estimated the relationship between processing parameters(Ar gas, O2 gas, Temperature) and properties of ITO films (Sheet Resistance, Film Thickness, Transmittance, Surface Roughness).

Physical Properties of ITO/PVDF as a function of Oxygen Partial Pressure (산소 분압 조절에 따른 ITO/PVDF 박막 물성 조절 연구)

  • Le, Sang-Yub;Kim, Ji-Hwan;Park, Dong-Hee;Byun, Dong-Jin;Choi, Won-Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.923-929
    • /
    • 2008
  • On the piezoelectric polymer, PVDF (poly vinylidene fluoride), the transparent conducting oxide (TCO) electrode material thin film was deposited by roll to roll sputtering process mentioned as a mass product-friendly process for display application. The deposition method for ITO Indium Tin Oxides) as our TCO was DC magnetron sputtering optimized for polymer substrate with the low process temperature. As a result, a high transparent and good conductive ITO/PVDF film was prepared. During the process, especially, the gas mixture ratio of Ar and Oxygen was concluded as an important factor for determining the film's physical properties. There were the optimum ranges for process conditions of mixture gas ratio for ITO/PVDF From these results, the doping mechanism between the oxygen atom and the metal element, Indium or Tin was highly influenced by oxygen partial pressure condition during the deposition process at ambient temperature, which gives the conductivity to oxide electrode, as generally accepted. With our studies, the process windows of TCO for display and other application can be expected.

ITO Films Deposited by Sputter Method of Powder Target at Room Temperature. (상온에서 분말타겟의 스퍼터에 의해 증착된 ITO박막)

  • 김현후;이재형;신성호;신재혁;박광자
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.5
    • /
    • pp.349-355
    • /
    • 2000
  • Indium tin oxide (ITO) thin films have been deposited on PET (polyethylene terephthalate) and glass substrates by a do magnetron sputter method of powder target without heat treatments such as substrate heater and post heat treatment. During the sputtering deposition, sputtering parameters such as sputtering power, working pressure, oxygen gas mixture, film thickness and substrate-target distance are important factors for the high quality of ITO thin films. The structural, electrical and optical properties of as-deposited ITO oxide films are investigated by sputtering power, oxygen partial pressure and films thickness among the several sputtering conditions. XRD patterns of ITO films are affected by sputtering power and pressure. As the power and pressure are increased, (411) and (422) peaks of ITO films are grown strongly. Electrical resistivity is also increased, as the sputtering power and pressure are increased. Transmittance of ITO thin films in the visible light ranges is lowered with an increase of sputtering power and film thickness. Reflectance of ITO films in infra-red region is decreased, as the power and pressure is increased.

  • PDF