DOI QR코드

DOI QR Code

Indium Tin Oxide (ITO) Nano Thin Films Deposited by a Modulated Pulse Sputtering at Room Temperature

모듈레이티드 펄스 스퍼터링으로 상온 증착한 Indium-Tin-Oxide (ITO) 나노 박막

  • You, Younggoon (Department of Materials Science and Engineering, Plasma Materials Research Center Kunsan National University) ;
  • Jeong, Jinyong (Department of Materials Science and Engineering, Plasma Materials Research Center Kunsan National University) ;
  • Joo, Junghoon (Department of Materials Science and Engineering, Plasma Materials Research Center Kunsan National University)
  • 유영군 (군산대학교 공과대학 신소재공학과 플라즈마 소재 응용 센터) ;
  • 정진용 (군산대학교 공과대학 신소재공학과 플라즈마 소재 응용 센터) ;
  • 주정훈 (군산대학교 공과대학 신소재공학과 플라즈마 소재 응용 센터)
  • Received : 2014.06.17
  • Accepted : 2014.06.27
  • Published : 2014.06.30

Abstract

High power impulse magnetron sputtering (HIPIMS), also known as the technology is called peak power density in a short period, you can get high, so high ionization sputtering rate can make. Higher ionization of sputtered species to a variety of coating materials conventional in the field of improving the characteristics and self-assisted ion thin film deposition process, which contributes to a superior being. HIPIMS at the same power, but the deposition speed is slow in comparison with DC disadvantages. Since recently as a replacement for HIPIMS modulated pulse power (MPP) has been developed. This ionization rate of the sputtered species can increase the deposition rate is lowered and at the same time to overcome the problems to be reported. The differences between the MPP and the HIPIMS is a simple single pulse with a HIPIMS whereas, MPP is 3 ms in pulse length is adjustable, with the full set of multi-pulses within the pulse period and the pulse is applied can be micro advantages. In this experiment, $In_2O_3$ : $SnO_2$ composition ratio of 9 : 1 wt% target was used, Ar : $O_2$ flow rate ratio is 4.8 to 13.0% of the rate of deposition was carried out at room temperature. Ar 40 sccm and the flow rate of $O_2$ and then fixed 2 ~ 6 sccm was compared against that. The thickness of the thin film deposition is fixed at 60 nm, when the partial pressure of oxygen at 9.1%, the specific resistance value of $4.565{\times}10^{-4}{\Omega}cm$, transmittance 86.6%, mobility $32.29cm^2/Vs$ to obtain the value.

Keywords

References

  1. Kentaro Utsumi, Osamu Matsunaga, Tsutomu Takahatai, Thin solid film, 334 (1999) 30-34.
  2. Q. F. Wei, Journal of Adhesion Science and Technology 24 (2010) 135-147. https://doi.org/10.1163/016942409X12538812501072
  3. S. B. Kang, Y. J. Noh, S. I. Na, H. K. Kim, Solar Energy Materials & Solar Cells 121 (2014) 85-91. https://doi.org/10.1016/j.solmat.2013.10.034
  4. Artorn Pokaipisit, Mati Horprathum and Pichet Limsuwan, Kasetsart J. (Nat. Sci.) 42 (2008) 362-366.
  5. H. Kim, J. Lee and C. Park, Journal of the Korean Physical Society, 41 (2002) 395-399.
  6. J. F. Li, Progress In Electromagnetics Research Symposium, Beijing, China,March 23-27 (2009) 1073.
  7. W. yang, J. Joo, J. Kor. Inst. Surf. Eng. 45 (2012)
  8. P. K. Bull. Mater. Sci., 29 (2006) 323-330. ${\copyright}$ Indian Academy of Sciences. https://doi.org/10.1007/BF02706504
  9. Y. Li, SURFACE AND INTERFACE ANALYSIS, Surf. Interface Anal. 39 (2007) 756-760, Published online 13 August 2007 in Wiley InterScience DOI:10.1002/sia.2585
  10. S. K. So. Appl. Phys. A 68 (1999) 447-450, DOI 10.1007, s003399900968
  11. L. Kerkache et al., International Conference on Renewable Energies and Power Quality (ICREPQ'10) (2010) 23-25.
  12. J. Hotovy et al., Applied Surface Science 269 (2013) 81-87. https://doi.org/10.1016/j.apsusc.2012.10.180
  13. H. H. Kim, M. J. Cho, K. J. Lim, J. H. Shin, J. I. Park, and J. I. Ahn, International Conference on Electrical Engineering (2002) 1257-1259.
  14. Kamon Aiempanakit, Pattana Rakkwamsuk and Supattanapong Dumrongrattana, Kasetsart J. (Nat. Sci.) 42 (2008) 351-356.
  15. M. J. Keumand, J. G. Han, Journal of the Korean Physical Society, 53 (2008) 1580-1583. https://doi.org/10.3938/jkps.53.1580
  16. L. W., S. Cheng, Journal of Semiconductors, 32 (2011) 013002-1-013002-4. https://doi.org/10.1088/1674-4926/32/1/013002
  17. M. H. Ahn, E. S. Cho, S. J. Kwon, Vacuum 101 (2014) 221-227. https://doi.org/10.1016/j.vacuum.2013.08.018
  18. Akbar Eshaghia, Alireza Graeli, Optik 125 (2014) 1478-1481. https://doi.org/10.1016/j.ijleo.2013.09.011
  19. J. Xu, Z. Yang, H. Wang, H. Xu, X. Zhang, Materials Sciencein Semiconductor Processing 21 (2014) 104-110. https://doi.org/10.1016/j.mssp.2014.01.007
  20. Ralf Bandorf et al., 2013.04.22, HIPIMS-ITO from Cylindrical Cathodes
  21. H. J. Choi, S.-G. Yoon, J. H. Lee, J. Y. Lee, ECS Journal of Solid State Science and Technology, 1 (2012) Q106-Q109. https://doi.org/10.1149/2.016205jss