• Title/Summary/Keyword: incompressible viscous flow

Search Result 188, Processing Time 0.03 seconds

Unsteady Lift and Drag Forces Acting on the Elliptic Cylinder

  • Kim Moon-Sang;Park Young-Bin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.167-175
    • /
    • 2006
  • A parametric study has been accomplished to figure out the effects of elliptic cylinder thickness, angle of attack, and Reynolds number on the unsteady lift and drag forces exerted on the elliptic cylinder. A two-dimensional incompressible Navier-Stokes flow solver is developed based on the SIMPLER method in the body-intrinsic coordinates system to analyze the unsteady viscous flow over elliptic cylinder. Thickness-to-chord ratios of 0.2, 0.4, and 0.6 elliptic cylinders are simulated at different Reynolds numbers of 400 and 600, and angles of attack of $10^{\circ},\;20^{\circ},\;and\;30^{\circ}$. Through this study, it is observed that the elliptic cylinder thickness, angle of attack, and Reynolds number are very important parameters to decide the lift and drag forces. All these parameters also affect significantly the frequencies of the unsteady force oscillations.

EFFECT OF POROSITY ON THE TRANSIENT MHD GENERALIZED COUETTE FLOW WITH HEAT TRANSFER IN THE PRESENCE OF HEAT SOURCE AND UNIFORM SUCTION AND INJECTION

  • Attia, Hazem Ali;Ewis, Karem Mahmoud;Awad-Allah, Nabil Ahmed
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.125-135
    • /
    • 2012
  • The transient magnetohydrodynamic (MHD) generalized Couette flow with heat transfer through a porous medium of an electrically conducting, viscous, incompressible fluid bounded by two parallel insulating porous plates is studied in the presence of uniform suction and injection and a heat source considering the Hall effect. A uniform and constant pressure gradient is imposed in the axial direction and an externally applied uniform magnetic field as well as a uniform suction and injection are applied in the direction perpendicular to the plates. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the Hall current, the porosity of the medium and the uniform suction and injection on both the velocity and temperature distributions is investigated.

Numerical Study of Flow Characteristics of Marine Propeller (수중 프로펠러의 유동특성에 관한 수치적 연구)

  • Kim Yong-Moon;Jang Jin-Ho;Park Warn-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.139-143
    • /
    • 2002
  • The purpose of this paper is to develop the CFD code to consider the viscous flow features of the marine propeller. The flow of the marine propeller has been numerically analyzed by using three dimensional viscous incompressible Navier-Stokes equation. The model used in this study is Screw B with 4 blades whose pitch ratio is 1 in Ka-4-55 screw series. The result of the analysis was compared with panel method.

  • PDF

UNSTEADY HARTMANN FLOW WITH HEAT TRANSFER IN THE PRESENCE OF UNIFORM SUCTION AND INJECTION

  • Attia Hazem A.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.1 s.31
    • /
    • pp.1-10
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to a constant pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the magnetic field and the uniform suction and injection on both the velocity and temperature distributions is examined.

  • PDF

Development of an Incompressible Navier-Stokes Solver using SMAC Algorithm on Unstructured Triangular Meshes (비구조형 삼각형 격자에 대한 SMAC기법을 이용한 비압축성 나비어-스톡스 방정식 해법 개발)

  • Nam Hyeun S.;Moon Young J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.55-60
    • /
    • 1997
  • An unstructured finite volume method is presented for seeking steady and unsteady flow solutions of the two-dimensional incompressible viscous flows. In the present method, SMAC-type algorithm is implemented on unstructured triangular meshes, using second order upwind scheme for the convective fluxes. Validation tests are made for various steady and unsteady incompressible flows. Convergence characteristics are examined and accuracy comparisons are made with some benchmark solutions.

  • PDF

Incompressible/Compressible Flow Analysis over High-Lift Airfoils Using Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 고양력 익형 주위의 비압축성/압축성 유동장 해석)

  • Kim C. S.;Kim C. A.;Rho O. H.
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.53-61
    • /
    • 1999
  • Two-dimensional, unsteady, incompressible and compressible Navier-Stokes codes are developed for the computation of the viscous turbulent flow over high-lift airfoils. The compressible code involves a conventional upwind-differenced scheme for the convective terms and LU-SGS scheme for temporal integration. The incompressible code with pseudo-compressibility method also adopts the same schemes as the compressible code. Three two-equation turbulence models are evaluated by computing the flow over single and multi-element airfoils. The compressible and incompressible codes are validated by predicting the flow around the RAE 2822 transonic airfoil and the NACA 4412 airfoil, respectively. In addition, both the incompressible and compressible code are used to compute the flow over the NLR 7301 airfoil with flap to study the compressible effect near the high-loaded leading edge. The grid systems are efficiently generated using Chimera overlapping grid scheme. Overall, the κ-ω SST model shows closer agreement with experiment results, especially in the prediction of adverse pressure gradient region on the suction surfaces of high-lift airfoils.

  • PDF

Finite Element Analysis of Transient Viscous Flow with Free Surface using Filling Pattern Technique (형상 충전 기법을 이용한 자유표면의 비정상 점성 유동장의 유한 요소 해석)

  • Kim, Ki-Don;Jeong, Jun-Ho;Yang, Dong-Yol
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.551-556
    • /
    • 2001
  • The filling pattern technique based on the finite element method and Eulerian mesh advancement approach has been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and predictor-corrector methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. Using the proposed numerical technique, the collapse of a dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result.

  • PDF

Three-dimensional incompressible viscous solutions based on the unsteady physical curvilinear coordinate system

  • Lee S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.43-48
    • /
    • 1998
  • The development of unsteady three-dimensional incompressible viscous solver based on unsteady physical curvilinear coordinate system is presented. A 12-point finite analytic scheme based on local uniform grid spacing is extended for nonuniform grid spacing. The formulation of a condition is suggested to avoid the oscillation of the series summations produced by the application of the method of separation of variables. SIMPLER and pressure Poisson equation techniques are used for solving a velocity-pressure coupled problem. The matrix is solved using the Generalized Minimal RESidual (GMRES) method to enhance the convergence rate of unsteady flow solver and the Kinematic boundary condition of a free surface flow. It is demonstrated that the numerical solutions of these equations are less mesh sensitive.

  • PDF

3-D Incompressible Viscous Flow Analysis Around A Rotor-Stator with Rotor-Stator Interaction (로터-스테이터 상호작용을 고려한 3차원 유동 해석)

  • Kim K. H.;Jung Y. L.;Park W. G.;Lee S. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.78-83
    • /
    • 2000
  • An iterative time marching procedure for solving incompressible internal flow has been applied to the flow around a rotor-stator. This procedure solves three-dimensional incompressible Reynolds-averaged Navier-Stokes equation on a moving, time-deforming, non-orthogonal body-fitted grid using second-order accurate schemes for the time derivatives and third/second-order accurate schemes for the spatial derivatives. To handle rotationg geometry, the multiblock technique is applied and the overall flow domain is subdivided into two blocks. In each block, a grid is generated and flowfield is solved independently of the other blocks. The boundary data for each block is provided by the neighboring blocks using bilinear interpolation technique.

  • PDF

Unsteady Viscous Flow over Elliptic Cylinders At Various Thickness with Different Reynolds Numbers

  • Kim Moon-Sang;Sengupta Ayan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.877-886
    • /
    • 2005
  • Two-dimensional incompressible Navier-Stokes equations are solved using SIMPLER method in the intrinsic curvilinear coordinates system to study the unsteady viscous flow physics over two-dimensional ellipses. Unsteady viscous flows over various thickness-to-chord ratios of 0.6, 0.8, 1.0, and 1.2 elliptic cylinders are simulated at different Reynolds numbers of 200, 400, and 1,000. This study is focused on the understanding the effects of Reynolds number and elliptic cylinder thickness on the drag and lift forces. The present numerical solutions are compared with available experimental and numerical results and show a good agreement. Through this study, it is observed that the Reynolds number and the cylinder thickness affect significantly the frequencies of the force oscillations as well as the mean values and the amplitudes of the drag and lift forces.