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ABSTRACT. The transient magnetohydrodynamic (MHD) generalized Couette flow with heat 
transfer through a porous medium of an electrically conducting, viscous, incompressible fluid 
bounded by two parallel insulating porous plates is studied in the presence of uniform suction and 
injection and a heat source considering the Hall effect.  A uniform and constant pressure gradient 
is imposed in the axial direction and an externally applied uniform magnetic field as well as a 
uniform suction and injection are applied in the direction perpendicular to the plates.  The two 
plates are kept at different but constant temperatures while the Joule and viscous dissipations are 
included in the energy equation.  The effect of the Hall current, the porosity of the medium and 
the uniform suction and injection on both the velocity and temperature distributions is investigated. 

1. INTRODUCTION 

The magnetohydrodynamic (MHD) flow between two parallel plates, known as Hartmann 
flow, is a classical problem that has many applications in MHD power generators, MHD 
pumps, accelerators, aerodynamic heating, electrostatic precipitation, polymer technology, 
petroleum industry, purification of crude oil and fluid droplets and sprays.  Hartmann and 
Lazarus [1] studied the influence of a transverse uniform magnetic field on the flow of a 
conducting fluid between two infinite parallel, stationary, and insulated  

+plates.  Then, a lot of research work concerning the Hartmann flow has been obtained 
under different physical effects [2-10].  In most cases the Hall and ion slip terms were 
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ignored in applying Ohm's law as they have no marked effect for small and moderate values 
of the magnetic field.  However, the current trend for the application of MHD is towards a 
strong magnetic field, so that the influence of electromagnetic force is noticeable [6-7].  
Under these conditions, the Hall current and ion slip are important and they have a marked 
effect on the magnitude and direction of the current density and consequently on the 
magnetic force term. Soudalgekar et al. [8-9] studied the effect of the Hall currents on the 
steady MHD Couette flow with heat transfer. The temperatures of the two plates were 
assumed either to be constant [8] or to vary linearly along the plates in the direction of the 
flow [9]. Attia [10-11] extended the problem to the unsteady state with heat transfer, with 
constant pressure gradient applied. 

In the present work, the transient generalized Couette flow and heat transfer through a 
porous medium of an incompressible, viscous, electrically conducting fluid between two 
infinite insulating horizontal porous plates are studied with the consideration of the Hall 
current and in the presence of a heat source.  The upper plate is moving with a uniform 
velocity while the lower plate remains stationary.  The fluid is acted upon by a constant 
pressure gradient, a uniform suction and injection and a uniform magnetic field 
perpendicular to the plates.  The flow through a porous medium deals with the analysis in 
which the differential equation governing the fluid motion is based on the Darcy’s law 
which accounts for the drag exerted by the porous medium [12-14]. The two plates are 
maintained at two different but constant temperatures.  The governing equations including 
the Joule and viscous dissipations are solved numerically using the method of finite 
difference.  The effect of the magnetic field, the Hall current, the porosity of the medium 
and the suction and injection on both the velocity and temperature distributions is reported. 

 
 

2. DESCRIPTION OF THE PROBLEM 

The two insulating plates are located at the y=±h planes and extend from x=-∞ to ∞ 
and z=-∞ to ∞ .  The upper plate is moving with a uniform velocity Uo while the 
lower plate remains fixed.  The lower and upper plates are kept at the two constant 
temperatures T1 and T2, respectively, where T2>T1 and a heat source is included.  The 
fluid flows between the two plates under the effect of a constant pressure gradient 
dP/dx in the axial x-direction, and a uniform suction from above and injection from 
below which are applied at t=0 with velocity ov . The whole system is subjected to a 

uniform magnetic field Bo in the positive y-direction.  This is the total magnetic field 
acting on the fluid since the induced magnetic field is neglected.  The fluid flows 
between the two plates in a porous medium where the Darcy model is assumed [12-
14]. From the geometry of the problem, it is evident that all quantities are independent 
of x and z-coordinates apart from the pressure gradient dP/dx.  The existence of the 
Hall term results in a z-component of the velocity. Thus, the velocity vector of the 
fluid is  ktywjvityutyv o ),(),(),(  . 
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The initial and boundary conditions are: u=w=0 at t≤0, u=w=0 at y=-h for t>0 and 
u=Uo and w=0 at y=h for t>0.  The temperature T(y,t) at any point in the fluid 
satisfies both the initial and boundary conditions T=T1 at t≤0, T=T2 at y=+h, and T=T1 
at y=-h for t>0.  The fluid flow is governed by the momentum equation 

oBJPv
Dt

Dv
 2                                      (1) 

where   and   are, respectively, the density and the coefficient of viscosity of the 
fluid. If the Hall term is retained, the current density J is given by 

))(( oo BJBvJ    

where   is the electric conductivity of the fluid, and   is the Hall factor [8,9].  
This equation may be solved in  J  yielding 
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where oBm  , is the Hall parameter [8,9]. Thus, in terms of Eq. (2), the two 

components of Eq. (1) read [15] 
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The temperature distribution is governed by the energy equation [15] 
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    (5)              

where cp and k are, respectively, the specific heat capacity and the thermal 
conductivity of the fluid, Kp is the Darcy's permeability and Q is the heat generation 
coefficient. The last terms in the right side of Eqs. (3) and (4) represent the porosity 
force.  The second and third terms in the right side represent the viscous and Joule 
dissipations, respectively. Introducing the following non-dimensional quantities 
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 /Re ohU , is the Reynolds number, 

,/ oo UvS   is the suction parameter, 

kc p /Pr  , is the Prandtl number, 

)(/ 12
2 TTcUEc po  ,  is the Eckert number, 

 /222 hBHa o , where Ha is the Hartmann number, 

)/( 0KpUhM   is the porosity parameter, 

)/(ˆ
0 phcQUQ   is the dimensionless heat generation coefficient 
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the basic Eqs. (3)-(5) are written as (the hats are dropped for convenience) 
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The initial and boundary conditions for the velocity become 

,1,0,1,1,0:0,0:0  ywuywutwut                    (9) 
and the initial and boundary conditions for the temperature are given by 

.1,0,1,1:0,0:0  yTyTtTt                             (10) 
 

3. NUMERICAL SOLUTION OF THE GOVERNING EQUATIONS 

Equations (6)-(8) are solved numerically using the method of finite difference 
[16] under the initial and boundary conditions (9) and (10) to determine the velocity 
and temperature distributions for different values of the parameters Ha, m, M, S and 
Q.  The Crank-Nicolson implicit method is applied and the finite difference 
equations are written at the mid-point of the computational cell and the different 
terms are replaced by their second-order central difference approximations in the y-
direction. The diffusion term is replaced by the average of the central differences at 
two successive time levels. The viscous and Joule dissipation terms are evaluated 
using the velocity components and their derivatives in the y-direction which are 
obtained from the exact solution. Finally, the block tri-diagonal system is solved 
using Thomas' algorithm. All computations are carried out for dP/dx=5, Re=1, Pr=1 
and Ec=0.2.  

    

4. RESULTS AND DISCUSSION 

Figure 1 presents the profiles of the velocity components u and w and the temperature T for 
different values of time t and for Ha=1, m=3, M=2, S=1 and Q=0.4.  It is clear from the 
figure that the velocity components and temperature reaches the steady state monotonically 
with time.  Also the velocity component u reaches the steady state faster than w which, in 
turn, reaches the steady state faster than T because u is the source of w, while both u and w act 
as sources for the temperature. 
 Figure 2 indicates that the time progression of u and w at the centre of the channel 
y=0 for different values of the Hall parameter m and for Ha=1, M=2, S=0 and Q=0.4.  It is 
clear from Fig. 2a that increasing the parameter m increases u because the effective 
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conductivity ( )1/( 2m ) decreases with increasing m which reduces the magnetic resistive 
force on u.  In Fig. 2b, the velocity component w increases with increasing the parameter m 

slightly (m=0 to 1), since increasing m increases the driving force term ( )1/( 22 mumHa  ) 
in Eq. (7) which affects the flow in the z-direction.  However, increasing m more decreases 
the effective conductivity that results in a reduced driving force and then, decreases w.   It is 
clear from Fig. 2c that increasing m decreases T for all t due to decreasing the effect of the 
Joule dissipation.   
 Figure 3 presents the time progression of u, w and T at the centre of the channel for 
different values of the Hartmann number Ha and for m=3, M=0, S=0 and Q=0.4.  Figure 3a 
indicates that increasing Ha decreases u as a result of increasing the damping force on u.  
Figure 3b indicates that increasing Ha increases w since it increases the driving force on w.  
Figure 3c depicts that for small t, increasing Ha increases T due to the increment in the Joule 
dissipation.  But, for large t, increasing Ha decreases T as a result of decreasing the 
velocities u and w and consequently decreases the viscous and Joule dissipations. 
 Figure 4 presents the time progression of u, w and T at the centre of the channel for 
different values of the suction parameter S and for Ha=1, M=2, m=3 and Q=0.  Figures 4a 
and 4b indicate that increasing the suction decreases both u and w due to the convection of the 
fluid from regions in the lower half to the centre which has higher fluid speed.  Figure 4c 
shows that increasing S decreases the temperature at the centre of the channel due to the 
influence of convection in pumping the fluid from the cold lower half towards the centre of 
the channel. 

Figure 5 presents the time progression of u, w and T at the centre of the channel for 
different values of the porosity parameter M and for Ha=1, m=3, S=0 and Q=0.  Figure 5a and 
5b indicate that increasing M decreases u and w as a result of increasing the damping force.  
Figure 5c depicts that increasing M decreases T due to the decrement in the Joule and viscous 
dissipations. Figure 6 presents the time progression of T at the centre of the channel for 
different values of the parameter Q and for Ha=1, m=3, M=2 and S=1.  The figure indicates 
that increasing Q increases the temperature at the centre of the channel and its steady state 
time.   

 

5. CONCLUSION 

The transient MHD generalized Couette flow with heat transfer through a porous medium 
of an electrically conducting fluid under the influence of an applied uniform magnetic field 
has been studied considering the Hall effect in the presence of uniform suction and injection 
and a heat source.  Introducing the Hall term gives rise to a velocity component w in the z-
direction which affects the main velocity u in the x-direction. The effect of the magnetic 
field, the Hall parameter, the porosity parameter and the suction and injection velocity on 
the velocity and temperature distributions has been investigated. Both the magnetic field and 
the porosity of the medium have a damping effect on the velocity and temperature fields 
whereas the Hall parameter m increases the main velocity component u. On the other hand, 
increasing m increases the velocity component w for small m but decreases it for large m. 
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FIGURE 1. Time development of the profile of: (a) u; (b) w; and (c) T 
(Ha=1, m=3, M=2 and S=1, Q=0.4) 
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FIGURE 2. Effect of m on the time variation of: (a) u at y=0; (b) w at y=0 and (c) T at y=0. 
(Ha=1, M=2, S=0, and Q=0.4) 
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FIGURE 3. Effect of Ha on the time variation of: (a) u at y=0; (b) w at y=0 and (c) T at y=0. 
(m=3, M=0, S=0 and Q=0.4) 
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FIGURE 4. Effect of S on the time variation of: (a) u at y=0; (b) w at y=0; and (c) T at y=0. 
(Ha=1, M=2, m=3, and Q=0) 
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FIGURE 5. Effect of M on the time variation of: (a) u at y=0; (b) w at y=0; and (c) T at y=0. 
(Ha=1, m=3 and Q=0, S=0) 
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FIGURE 6. Effect of Q on the time variation of: T at y=0. 
(Ha=1, m=3 and M=2, S=1) 
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