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Unsteady Viscous Flow over Elliptic Cylinders
At Various Thickness with Different Reynolds Numbers
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Two-dimensional incompressible Navier-Stokes equations are solved using SIMPLER

method in the intrinsic curvilinear coordinates system to study the unsteady viscous flow physics

over two-dimensional ellipses. Unsteady viscous flows over various thickness—to—chord ratios of
0.6, 0.8, 1.0, and 1.2 elliptic cylinders are simulated at different Reynolds numbers of 200, 400,
and 1,000. This study is focused on the understanding the effects of Reynolds number and elliptic
cylinder thickness on the drag and lift forces. The present numerical solutions are compared with
available experimental arid numerical results and show a good agreement. Through this study,
it is observed that the Reynolds number and the cylinder thickness affect significantly the
frequencies of the force oscillations as well as the mean values and the amplitudes of the drag

and lift forces.
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1. Introduction

The earliest recorded observation of the pheno-
menon of vortex shedding can be traced back to
the sixteenth century when Leonardo da Vinci
made drawings of surface pattern of the fluid flow
past an obstacle (Perry et al., 1982).

A wake flow behind a bluff body is very sig-
nificant flow phenomena in the engineering field.
The alternate vortex shedding occurred in the
near wake behind a bluff body leads to periodi-
cally oscillating drag and lift forces. Especially
the oscillating lift force, whose direction is trans-
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verse to the flow, is large and may cause structur-
al vibrations, acoustic noise, or resonance, which
in some cases can trigger failure (Williamson,
1996) .

Many researcher have studied steady/unsteady
flows past over circular cylinders. Park et al.
(1998) reported detailed information of flow
quantities on the cylinder surface at low Reynolds
numbers up to 160. A detailed study of the wake
structures and flow dynamics associated with
simulated two-dimensional flows past a circular
cylinder that is either stationary or in simple har-
monic cross-flow oscillation is done by Black-
burn and Henderson (1999). Jordan and Fromm
{1972) investigated oscillatory drag, lift, and tor-
que on a circular cylinder in a uniform flow at
Reynolds numbers of 100, 400, and 1,000 by
solving vorticity-stream function formulation.
They showed the dramatic rise of the drag co-
efficient during the development of the Karman
vortex street. Manzari (2003) presented a finite
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element solution procedure for the simulation
of transient incompressible fluid flows using tri-
angular meshes. His algorithm is based on the
artificial compressibility technique in connection
with a dual time-stepping approach. A higher-
order immersed boundary method was applied
to the two-dimensional unsteady incompressible
Navier-Stokes equations in vorticity-stream func-
tion formulation to solve unsteady incompressible
flow by Linnick and Fasel (2003).

Besides the basic study or development of nu-
merical algorithm to solve flows past circular
cylinders, some researchers have tried to control
the vortex shedding. Kang and Choi (1999) in-
vestigated two-dimensional laminar flow past a
circular cylinder rotating with a constant angular
velocity for the purpose of controlling vortex
shedding and understanding the underlying flow
mechanism. Also, Park et al.(1994) studied the
feedback control of von Karman vortex shedding
behind a circular cylinder at low Reynolds num-
bers numerically.

Actually, many studies have been accomplished
for flows past circular cylinders because of geo-
metric simplicity. However, it would be valuable
attempts to study the flows past elliptic cylinders.
Engineering applications often involve flows over
complex bodies like wings, submarines, missiles,
and rotor blades, which can hardly be modeled as
a flow over a circular cylinder. In such flows,
cylinder thickness and angle of attack can greatly
influence the nature of separation and the wake
structure (Mittal and Balachandar, 1996).

In 1987, Ota et al.(1987) investigated a flow
around an elliptic cylinder of axis ratio 1 : 3 in the
critical Reynolds number regime, which extends
from about Re=85,000 to 312,000, on the basis
of mean static pressure measurements along the
cylinder surface and of hot-wire velocity mea-
surements in the near wake. Nair and Sengupta
(1996) solved Navier-Stokes equations in order
to study the onset of computed asymmetry around
elliptic cylinders at a Reynolds number of 10,000.
They found that the ellipses developed asym-
metry much earlier than the circular cylinder.
Patel (1981), Chou & Huang (1996), Nair &
Sengupta (1997), D’Alessio et al.(1999), and

Badr et al.(2001) solved unsteady Navier-Stokes
equations expressed in terms of stream function
and vorticity formulations to study the flows past
elliptic cylinders for different angles of attack
in the range of Reynolds numbers from 100 to
40,000.

The objective of the present research is to stu-
dy the effects of elliptic cylinder thickness and
Reynolds numbers on the unsteady flow physics
concentrating on the drag and lift forces exerted
on the body. Unsteady viscous flows over various
thickness-to—-chord ratios of 0.6, 0.8, 1.0, and 1.2
elliptic cylinders are simulated at different Rey-
nolds numbers of 200, 400, and 1,000 by solving
unsteady form of incompressible Navier-Stokes
equations, which is written in two-dimensional
body intrinsic orthogonal curvilinear coordinate
system.

For the temporal integration, Crank-Nicolson
scheme is used. Patankar (1980) showed that the
power law scheme ideally fits for all the Peclet
numbers, so power law scheme is used for spatial

‘discretization.

Current techniques for the solution of incom-
pressible viscous flow can be categorized as vor-
ticity-stream function methods, artificial com-
pressibility methods, and projection methods. The
projection method is a fractional step method
in which an intermediate velocity and pressure
are calculated. The SIMPLE (Patankar 1980 ;
Patankar and Spalding 1972) method and all
related SIMPLE methods fall in this category. In
this paper, the discretized equations are solved
using a segregated approach where the discretized
equation for each variable is solved sequentially
using SIMPLER method (Patankar, 1980).

2. Governing Equations

2.1 Navier-Stokes equations

For the present analysis, the flowfield is as-
sumed to be a two-dimensional unsteady, incom-
pressible, laminar flow. The coordinate system is
taken to be a two-dimensional, body-intrinsic,
orthogonal curvilinear coordinate system shown
in Fig. 1 wherein the £-direction is taken to be
along the body while the z-direction is perpen-
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Fig. 1 Two-dimensional body-intrinsic coordinate
system

dicular to the body surface. With these assump-
tions, continuity and momentum equations can be
expressed as follows (detailed derivation can be
found in Lim 1991):

Continuiy Equation

dp 0

ot o5& ey
Here, /%, is scale factor in the &-direction. The
first term can be dropped for incompressible flow
but it is retained here for convenience.
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2.2 Discretization of governing equations

The surface and time integration of the gover-
ning equations over the control volume can be
done term by term and expressed as follows in the
intrinsic curvilinear coordinate system. All the

detailed derivations of the following discretized
governing equations can be found in Senguta

(2003).

Continuity Equation
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Here, superscript “0” represents the variable
quantity at the old time step. The value of =
0.5 corresponds to the Crank-Nicolson time inte-
gration scheme and @=1.0 corresponds to the
fully implicit scheme. In this study, Crank-Ni-
colson scheme was chosen.

—Momentum Equation

(o0 = (o0 HOERT.

ta( oy ~Ton oy T y) (s)
+=a) (8, =T T8~ Th )

= (St (1—a) S3,) ssmAn+ (pirs— bss) A7
where
1
]v;e:<.01/eve T ﬂ%?)AU

Joa=( npvevn—hp 92 )ag

___1_ ah1 M i % 8h1
Sve_ hl (PUeUﬂ) S -t I:ag( 87] )
1 dvy, e ahl \ 0%
+<hl % Ty 877/877}

#s;~Momentum Equation

JECC LA hlAEAﬂ

[(ovs) — (pwy)

Aa(Tory = Touy F o= Ton,) (6)

=) (I8, =T 4T~ T )
=(aSy, +(1—a) S,) imAEAD+ (pisa

where

— i) MAE



880 Moon-Sang Kim and Ayan Sengupta

- _1  dve
Jone (p Vave T, Ko >A77 3. Flow Solver
Development and Verification

]vm=<hlpvriv7/_hlll %Z;” )Aé
The solution algorithm used in the present

<£5__3£> work is based on the SIMPLER algorithm de-
Iy dn veloped by Patankar (1980) in conjunction with

_(_1_ Ve _ Uy %)3_} Crank-Nicolson time integration method.
o 08 o on /oy

__ L O, p [0
Su=—(oveve) 5 4 [95
I

The flow geometry along with the boundary
conditions is shown in Fig. 2(a). The outer boun-

Outer Bopndary of
Computatignal Domain

Cyclic Boundary

6) ssefon L

- o
Chord Length (¢)
(b) Cell diagram with a cyclic boundary in &~
(a) Flow geometry and boundary conditions direction

Fig. 2 Flow geometry and computational domain

Table 1 Comparisons with available numerical and experimental data (t/c=1.0)

Re Contributor St Cd ACd ACI! Cpb | ACpb
present 0.186 1.12 0.03 0.54 —0.78 0.09
Rogers, Kwak (T) 0.185 1.23 0.05 0.65
200 Belov (1) 0.193 1.19 0.04 0.64
Linnick, Fasel (2003) 0.197 1.34 0.04 0.69
Berger* (1972) 0.18—0.19
present 0.204 1.07 0.05 0.72 —0.91 0.17
400 Jordan, Fromm (1972) 0.200 1.23 0.07 0.75 -1.01 0.16 .
Gerrard®* (1) -0.85
present 0.219 1.04 0.08 0.88 —1.07 0.27
Goldstein* {117) 0.220 1.00
1,000 Jordan, Fromm (1972) 0.206 1.24 0.12 0.95 —1.15 0.30
Gerrard* (1) —0.75
Roshko*® (T111) 0.210
Note: 1. (*) denotes experimental results (1) in Linnick and Fasel (2003)

2.
3. (f1) in Jordan and Fromm (1972) 4. (1) in Chou and Huang (1996)
5. (fTt1) in Mittal and Balachandar (1996)



Unsteady Viscous Flow over Elliptic Cylinders At Various Thickness with Different Reynolds Numbers 881

dary of the computational domain has 30 times
of unit chord length distance from the center of
an elliptic cylinder. Here, the chord is defined as
a straight line connecting the leading edge and
trailing edge of the cylinder. The no-slip boun-
dary conditions are imposed on the solid surface
and the free stream conditions are applied to the
inflow boundary conditions. The outflow boun-
dary conditions are extrapolated from the interior
grid point values.

A cyclic boundary condition is implemented
to see the unsteady flow physics. A diagram for
cyclic boundary is presented in Fig. 2(b). The
domain extends from cell bl to zel with cell
1b overlapping with cell 7e7 and cell ie overlap-
ping with cell 7b1. Therefore, throughout all the
geometry calculations, all geometry parameters
needs to be copied from zb1 to ie and from zel
to 7b. The O-mesh shaped 148 X151 grid is gen-
erated algebraically.

Not many studies have been performed in the

area of unsteady flow past elliptic cylinders. So,

the flow solver verification was done by com-
paring the present numerical solutions with cur-
rently available numerical and experimental data
for a flow passed a circular cylinder. Table 1
summarizes this comparison result and shows a
good agreement.

4. Numerical
Results and Discussions

When vortex shedding occurs alternately be-
hind a circular cylinder, a periodic and asym-
metric flow pattern is formed. The periodic forces,
therefore, act on the circular cylinder in the free
stream direction (drag) and normal direction to
the free stream (lift). The drag and lift forces
exerted on the cylinder may be decomposed into
pressure force and friction force components as
follows :

Cd=Cdp+ Cdf, CI=Cip+Clf

Here, Cdp and Cdf are the pressure and friction
components of the drag coefficient, and CIp and
CIf are the pressure and friction components of
the lift coefficient, respectively.

Figure 3 shows typical time variations of C!
and Cd as a function of T for the circular cy-
linder at Re=200. Here, the lift and drag coeffi-
cients, C/ and Cd, are defined respectively as
Cli=2L/(putd) and Cd=2D/(puld), where
L, D, and d are the lift force per unit span, drag
force per unit span, and the cylinder diameter,
respectively. Also, the dimensionless time T is
defined as T=

uOO
time. In this figure, oscillating frequencies and

—-—, where { is dimensional

amplitudes of both coefficients can be compared
very clearly. The amplitude of C/is much greater
than that of Cd, and the frequency of C/is one-
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Fig. 3 Time variations of drag and lift coefficients
for circular cylinder at Re=200
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half the frequency of Cd. The frequency of C/
due to the vortex shedding can be expressed by
Strouhal number, which is made dimensionless
with the free stream velocity and the diameter of
the circular cylinder as follows :

st=IXd

Ueo

where f is frequency of lift force oscillation. Also,
Fig. 3 shows that the amplitudes of friction force
oscillations are much less than the amplitudes of
pressure force oscillations for both drag and lift
forces.

Figure 4 compares the time-averaged total drag
coefficient Cd, pressure drag coefficient Cdp,
and friction drag coefficient Cdf at various thick-
ness—to-chord ratios (#/c) of 0.6, 0.8, 1.0, and
1.2 ellipses with different Re of 200, 400, and
1,000 to investigate the effects of ellipse thickness
and Reynolds number on the drag coefficients.
The mean drag coefficient Cd increases a lot with
increase of /¢ at the same Re, while it decreases
as Re increases when #/c is less than 1.0 at the
same ¢/¢. For t/c=1.2, Cd is almost constant at
different Re. The total drag force mostly comes
from the pressure drag force and the portion of
pressure drag force increases with increase of Re
or t/c as shown in Table 2. The C—dp decreases
slightly as Re increases when #/c is less than
1.0 at the same #/c, while it increases slightly
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- — el Tl (Re=200
14F
12F
o — - —@— - — Cap(Re=1000)
B - —— Tdf (Re= 000}
w TF
~ -
©
<08
S08f
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Sosef
04F
02}
ok ' ' : '

e
Fig. 4 Cd, Cdp, and Cdf comparisons at different
Re and t/c

with increase of Re when t/c is greater than 1.0.
However, C—dp has a big increase of its magnitude
as t/c increases for the entire range of Reynolds
numbers considered in this study. It means that
'Cdp strongly depends on the #/ ¢ rather than Re.
This figure also shows that the rate of increment
ofc—dp along with increase of #/c is larger when
Re is larger.

On the other hand, Cdf decreases as Re
increases at the same ¢#/c, while its magnitude is
an almost same value for the different #/c at the
same Re. It means that Cdf is hardly affected by

Table 2 The contributing portion of Cdp and Cdf

to the Cd
Re | t/c | Cdp (%) | Cdf (%) | Coef. of Cd
0.6 62.1 379 0.57
0.8 73.4 26.6 0.81
200
1.0 80.4 19.6 1.12
1.2 85.1 14.9 1.48
0.6 68.5 31.5 0.46
0.8 79.5 20.5 0.73
400
1.0 85.7 14.3 1.07
1.2 89.4 10.6 1.47
0.6 76.4 23.6 0.37
0.8 86.2 13.8 0.66
1000
1.0 90.9 9.1 1.04
1.2 93.4 6.6 .47
04 R ~———— Re=200
¥ el Rt = AU0
[ l\ ——@—— Re=1000
o8 A\\\

Cpb

0.6 0.8 1.0 1.2
14

Fig. 5 Cpb versus ¢/c at different Re
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the cylinder thickness but strongly affected by
Re. Namely, Cdf strongly depends on Re.

Time-averaged base pressure coefficient, Cpb,
which is defined as a mean value of Cp at the
trailing edge of the cylinder, is plotted with re-
spect to ¢/ ¢ at different Re in Fig. 5. The abso-
lute value of _C~p3 increases as either #/c or Re
increases. Actually, the absolute value of m
becomes bigger when the wake region becomes
enlarged because of earlier separation occurrence
on the elliptic cylinder surface.

Figure 6 investigates the amplitude of base
pressure coefficient, ACpb, and the amplitude of
leading edge pressure coefficient, ACps, at vari-
ous with different Re. While Acps is nearly zero
value no matter what #/c or Re, the ACpb
increases as either /¢ or Re increases. Although
Cp fluctuation at the leading edge is under the
influence of Cp fluctuation at the trailing edge,
the amplitude ACps, which is about the order of
1073, is much less than ACpb.

The amplitudes of C/ and Cd oscillations are
one of the very important physics in unsteady
flow problem. At the beginning of this section, we
already mentioned that the amplitude of C/ is
much greater than that of Cd. Fig. 7 investigates
the amplitude of C/ and Cd at different Re and
t/c. Here, the amplitudes of C/ and Cd oscil-
lations are defined, respectively, as

0.4

Ll ACpb (Re=200)

il ACp (Re=A00)
- A ACph (Re=1000}
03} — W= ACps (Re=200)
— - —Mh— - — ACps (Re=400)
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ACpb, &Cps
o
o
ey

0.1

0.0

e
Fig. 6 Effects of Re and #/c on ACpb and
ACps

(Cl)max_ (Cl)min
2

(Cd)max_ (Cd)min
2

ACI=

ACd=

where the subscripts min and max denote the
minimum and maximum values, respectively, in
a period. Both ACd and AC/ increase as Ke or
t/c increases although ACd is much less than
ACI.

Figure 8 plots AC/, ACIp, and ACIf as a
function of /¢ with different Re, and Fig. 9
plots ACd, ACdp, and ACdf as a function of
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Fig. 8 Effects of Re and #/c on ACI, AC/Ip, and
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t/c with different Re. The amplitudes of lift and
drag coefficient due to pressure force are denoted
as ACIp and ACdp, and the amplitudes of lift
and drag coefficient due to friction force are
denoted as ACIf and ACdf respectively. Here,
note that AC/FACIH+ACIH, ACd+ACdp+
ACdf because the maximum amplitudes of force
oscillations for pressure and friction components
do not occur simultaneously. It is clear that
ACI=ACIp and ACd=ACdp because the to-
tal drag force mostly comes from the pressure
drag force as mentioned already. The ACI, ACIp,

0.14
ACd (Re=200}
ACdp (Re=200)
012 A ACHF (Re=200)
- ACd (Re=400)
[ — e~ ACdp (Re=d00)
0101 — A Ay (Remioty
= | —— @ ACd (Re=1000)
3 - — @~ ACd (Re=1000) /
1008 @ Acd (Re=1000)
5 |
8 0.06
=
o
<
0.04
0.02
0.00 0 T ..1!2

Fig. 9 Effects of Re and t/con ACd, ACdp, and A
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Fig. 10 S¢ versus Re at different ¢/c¢

and ACIf increase almost linearly with the
increase of #/c for all the different Re, however,
ACdp shows the parabolic increment tendency
as t/c increases for all the different Re.

Figure 10 plots the St as a function of Re for
the different #/c. As the Re increases, the vortex
shedding frequency increases for all #/c, and the
rate of increment of frequency along with the
increase of Re is larger when ¢/c is smaller. The
frequency is reduced as /¢ increases at the same
Re. In other words, the frequency of the vortex
shedding is higher when the thickness of elliptic
cylinder becomes thinner.

Figsures 11(a) and 11(b) show the development
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(b) The development of Cd with time at Re=1000

Fig. 11 The development of Cd with time
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of Cd with time for #/c¢=0.8 at different Re
and for different #/c at Re=1000, respectively.
In these figures, it is observed that the onset of
asymmetry is numerically developed faster when
the cylinder thickness becomes thinner or Rey-
nolds number becomes larger.

5. Summary and Conclusion

Through this study, we found that the total
drag force is increasing a lot with increase of t/c¢
and mostly comes from the pressure drag force.
The contributing portion of the pressure drag
force is increasing more and more as Re or £/c¢
is increasing. Also, the results show that the mean
pressure drag force strongly depends on the
cylinder thickness, whereas the mean friction drag
force is strongly dependent of the Reynolds num-
ber. Additionally, it is found that the rate of
increment of the mean pressure drag force along
with the increase of cylinder thickness is larger
when the Reynolds number is larger.

The amplitudes of lift and drag force oscil-
lations increase with increase of Reynolds number
or cylinder thickness although the amplitude of
drag force is much less than that of lift force.
While ACIp increases almost linearly with the
increase of £/c for all the different Re, ACdp
increases parabolically.

Not only the absolute magnitude of the mean
base pressure but also the amplitude of base pres-
sure oscillation increase as Reynolds number or
cylinder thickness increases. Though the Cp fluc-
tuation at the leading edge is influenced by the
Cp fluctuation at the trailing edge, the fluctua-
ting magnitude at the leading edge is very small
compared with the fluctuating magnitude at the
trailing edge.

The frequency of vortex shedding increases as
either Reynolds number increases or cylinder
thickness decreases, and the rate of increment of
frequency along with the increase of Reynolds
number is larger when the cylinder thickness
becomes thinner. Also, the onset of computed
asymmetry around the body is developed faster
when the cylinder thickness becomes thinner or
Reynolds number becomes larger.

Finally, we conclude that the Reynolds number
and cylinder thickness affect significantly the
characteristics of the drag and lift forces: mean
value, fluctuation amplitude, and oscillating fre-
quency.
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