• Title/Summary/Keyword: incompressible flow

Search Result 781, Processing Time 0.02 seconds

Optimal design of impeller in fan motor unit of cordless vacuum cleaner for improving flow performance and reducing aerodynamic noise (무선진공청소기 팬 모터 단품의 유량성능 향상과 공력소음 저감을 위한 임펠라 최적설계)

  • Kim, KunWoo;Ryu, Seo-Yoon;Cheong, Cheolung;Seo, Seongjin;Jang, Cheolmin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.379-389
    • /
    • 2020
  • In this study, the flow and noise performances of high-speed fan motor unit for cordless vacuum cleaner is improved by optimizing the impeller which drives the suction air through flow passage of the cordless vacuum cleaner. Firstly, the unsteady incompressible Reynolds averaged Navier-Stokes (RANS) equations are solved to investigate the flow through the fan motor unit using the computational fluid dynamics techniques. Based on flow field results, the Ffowcs-Williams and Hawkings (FW-H) integral equation is used to predict flow noise radiated from the impeller. Predicted results are compared to the measured ones, which confirms the validity of the numerical method used. It is found that the strong vortex is formed around the mid-chord region of the main blades where the blade curvature change rapidly. Given that vortex acts as a loss for flow and a noise source for noise, impeller blade is redesigned to suppress the identified vortex. The response surface method using two factors is employed to determine the optimum inlet and outlet sweep angles for maximum flow rate and minimum noise. Further analysis of finally selected design confirms the improved flow and noise performance.

Numerical Analysis and Experimental Investigation of Duct Flows of an MHD Propulsion System (사각형의 MHD 추진 덕트 내부유동에 관한 수치해석 및 실험적 연구)

  • J.W. Lee;S.J. Lee;C.M. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.83-93
    • /
    • 1995
  • A numerical and experimental investigation on the flow characteristics in the rectangular duct of an MHD propulsion system has been carried out. In numerical analysis, three-dimensional, steady-state, viscous, incompressible electrically conducting fluid flow under the influence of uniformly applied magnetic and electric fields was treated using a finite-difference technique. It was found from the numerical study that when the Lorentz force is weak, the typical parabolic velocity profile under a laminar flow condition changes to an M shaped profile near the electrode region and that the pressure increases linearly from the inlet toward the outlet of the MHD duct under constant electro-magnetic field. In experiment, thrust of the MHD propulsion system can be controlled easily by varying electrode current. The measured pressure gradient along the MHD duct is proportional to the Lorentz force, which is in agreement with the numerical results.

  • PDF

Simulation of Woody Leaf Netted Venation Based on Optimization Technique (최적화기법에 의한 나뭇잎 그물맥 시뮬레이션)

  • Chen, Lei;Li, Weizheng;Jang, Gang Won;Baek, Tae Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.323-329
    • /
    • 2013
  • This study attempts to simulate the structure of a woody leaf netted venation system by using topology optimization techniques. Based on finite element method (FEM) analysis of an incompressible fluid, a topology optimal design is applied to those woody leaf netted venation models. To solve the transverse shear locking problem of a thin plate caused by the Mindlin-Reissner plate model where a leaf netted venation is assumed to be a thin plate, a P1-nonconforming element and selective reduced integration are employed. Topology optimal design is applied to multiple physical domains. Combined with the Darcy-Stokes flow problems and extended to the optimal design of fluid channels, the multiple physical models of the flow system are analyzed and venation patterns of leafs are simulated. The calculated optimal shapes are compared with the natural shapes of woody leaf venation patterns. This interdisciplinary approach may improve our understanding of the leaf venation system.

A Study on Fluid Flow and Heat Transfer of a Corrugated Structure for Crossflow Reduction of Impingement Jet (충돌제트에서의 횡방향 유동 감소를 위한 파형 구조의 유동 및 열전달에 관한 연구)

  • Hwang, Byeong Jo;Kim, Seon Ho;Joo, Won Gu;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.329-339
    • /
    • 2017
  • Impingement jets have been applied in a wide variety of fields as they provide significantly high heat transfer on the impingement-jet stagnation zone. However, the crossflow in an impingement chamber developed by spent wall jets can disrupt and deflect the downstream jets in the array, leading to a decrease in the cooling performance of an array of impingement jets. A numerical analysis is made of the fluid flow and heat transfer characteristics in a corrugated structure that traps the spent air in the corrugations between impingement jets and reduces crossflow effects on downstream jets. All computations are performed by considering a three-dimensional, steady, and incompressible flow by using the ANSYS-CFX 15.0 code. The effects of the configuration parameters of the corrugated structure on crossflow reduction of the array of impingement jets are presented and discussed.

Direct Simulation of the Magnetic Interaction of Elliptic Janus Particles Suspended in a Viscous Fluid (점성유체에 분산된 타원형 야누스 입자의 자성 상호작용에 관한 직접수치해석)

  • Kim, Hei Eun;Kang, Tae Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.455-462
    • /
    • 2017
  • The magnetic interaction between elliptic Janus magnetic particles are investigated using a direct simulation method. Each particle is a one-to-one mixture of paramagnetic and nonmagnetic materials. The fluid is assumed to be incompressible Newtonian and nonmagnetic. A uniform magnetic field is applied externally in a horizontal direction. A finite-element-based fictitious domain method is employed to solve the magnetic particulate flow in the creeping flow regime. In the magnetic problem, the magnetic field in the entire domain, including the particles and the fluid, is obtained by solving the governing equation for the magnetic potential. Then, the magnetic forces acting on the particles are calculated via a Maxwell stress tensor formulation. In a single particle problem, it is found that the orientation angle at equilibrium is affected by the aspect ratio of the particle. As for the two-particle interaction, the dynamics and the final conformation of the particles are significantly influenced by the aspect ratio, the orientation, and the spatial positions of the particles. For the given positions of the particles, the fluid flow is also influenced by the orientation of each particle. The self-assembly structure of the particles is not a fixed one, but it varies with the above-mentioned factors.

Unsteady Flow Analysis around an Elliptic Cylinder (타원형 실린더 주위의 비정상 유동 해석)

  • Yim, Y.-T.;Park, Y.-B.;Kim, M.-S.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.15-20
    • /
    • 2005
  • Two-dimensional incompressible Navier-Stokes flow solver is developed using SIMPLER method to study the unsteady viscous flow physics over two-dimensional ellipses. Unsteady viscous flows over various thickness-to-chord ratios of 0.6, 0.8, 1.0, and 1.2 elliptic cylinders are simulated at different Reynolds numbers of 200, 400, and 1,000. This study is focused on the understanding the effects of Reynolds number and elliptic cylinder thickness on the drag and lift forces. The present numerical solutions are compared with available experimental and numerical results and show a good agreement. Through this study, it is observed that the Reynolds number and the cylinder thickness affect not only the frequency of the force oscillations but also the mean values and the amplitudes of the total drag and lift forces significantly.

Forced Convection Cooling Across Rectangular Blocks in a Parallel Channel (블럭이 부착된 수평 유로에서의 강제대류 열전달 해석)

  • 조한승;유재석
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.251-257
    • /
    • 1993
  • The purpose of this study is to obtain an improved interpretation of heat transfer phenomena between blocks and fluids in the parallel conducting plates. Flow is two-dimensional, incompressible steady laminar flow over rectangular blocks, representing finite heat source on parallel plate. Heat transfer phenomena, temperature of blocks and heat transfer into the flow field are investigated for different spacings between blocks and Reynolds numbers. Results indicate that Nusselt number on the far upstream corner of the block was higher than that of any part of the block. As Reynolds number and spacings of blocks increased, Nusselt number increased. The distribution of local Nusselt number on the top surface of the conducting plate is similar to the case with insulated plate. Temperature of the block which has heat source in half cubage was approximately twice as high as temperature of the block which has heat source in whole cubage. As Reynolds number and spacings of blocks increased, overall temperature decreased. The peak value of block temperature occurred at position shifted to the right or upper right from center. The maximum temperature of block can be expressed as a function of Reynolds number, spacings between blocks, position of maximum temperature of each block and then it is possible to predict the maximum temperature of blocks.

  • PDF

Analysis of Airflow Pattern in Plant Factory with Different Inlet and Outlet Locations using Computational Fluid Dynamics

  • Lim, Tae-Gyu;Kim, Yong Hyeon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.310-317
    • /
    • 2014
  • Purpose: This study was conducted to analyze the air flow characteristics in a plant factory with different inlet and outlet locations using computational fluid dynamics (CFD). Methods: In this study, the flow was assumed to be a steady-state, incompressible, and three-dimensional turbulent flow. A realizable k-${\varepsilon}$ turbulent model was applied to show more reasonable results than the standard model. A CFD software was used to perform the numerical simulation. For validation of the simulation model, a prototype plant factory ($5,900mm{\times}2,800mm{\times}2,400mm$) was constructed with two inlets (${\Phi}250mm$) and one outlet ($710mm{\times}290mm$), located on the top side wall. For the simulation model, the average air current speed at the inlet was $5.11m{\cdot}s^{-1}$. Five cases were simulated to predict the airflow pattern in the plant factory with different inlet and outlet locations. Results: The root mean square error of measured and simulated air current speeds was 13%. The error was attributed to the assumptions applied to mathematical modelling and to the magnitude of the air current speed measured at the inlet. However, the measured and predicted airflow distributions of the plant factory exhibited similar patterns. When the inlets were located at the center of the side wall, the average air current speed in the plant factory was increased but the spatial uniformity was lowered. In contrast, if the inlets were located on the ceiling, the average air current speed was lowered but the uniformity was improved. Conclusions: Based on the results of this study, it was concluded that the airflow pattern in the plant factory with multilayer cultivation shelves was greatly affected by the locations of the inlet and the outlet.

Numerical Investigation of Aerodynamic Characteristics around Micro Aerial Vehicle using Multi-Block Grid (MULTI-BLOCK 격자 기법을 이용한 초소형 비행체 주위 공력 특성 해석)

  • Kim,Yeong-Hun;Kim,U-Rye;Lee,Jeong-Sang;Kim,Jong-Am;No,O-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.8-16
    • /
    • 2003
  • Aerodynamic characteristics over Micro Aerial Vehicle(MAV) in low Reynolds number regime are numerically studied using 3-D unsteady, incompressible Navier-Stokes flow solver with single partitioning method for multi-block grid. For more efficient computation of unsteady flows, this flow solver is parallel-implemented with MPl(Message Passing Interface) programming method. Firstly, MAV wing with not complex geometry is considered and then, we analyze aerodynamic characteristics over full MAV configuration varying the angle of attack. Present computational results show a better agreement with the experimental data by MACDL(Micro Aerodynamic Control and Design Lab.), Seoul National University. We can also find the conceptually designed MAV by MACDL has the static stability.

Computational Study of Unsteady Three Dimensional Wing in Pitching Motion Utilizing Linear Vortex Panel Method (VORTEX 패널법을 이용한 비정상 3차원 날개의 피칭 운동에 관한 연구)

  • Jeong,Bong-Gu;Cho,Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • In this study, steady/unsteady aerodynamic characteristic for three dimensional symmetric wing was investigated numerically using Vortex Panel Method. This program utilized linearly varying vortices in x and y directions distributed on the wing surface and was applied to the incompressible potential. flow around a three dimensional wing Separation and deformation of the wake are not considered. The comparison between NACA Airfoil Data and the computed results showed excellent agreement. πus method was applied to unsteady wings undergoing both sudden pitch-up and constant rate pitching motion. In the unsteady flow analysis, a formation and a time-dependent locations of Starting Vortices are considered and the effect of Starting Vortices on aerodynamic characteristic of the wing was calculated. The present method can be extended to apply for more complicated cases such as pitching, flapping and rotating wing analysis.