DOI QR코드

DOI QR Code

Numerical Investigation of Aerodynamic Characteristics around Micro Aerial Vehicle using Multi-Block Grid

MULTI-BLOCK 격자 기법을 이용한 초소형 비행체 주위 공력 특성 해석

  • 김영훈 (한국항공우주연구원) ;
  • 김우례 (서울대학교 기계항공공학부 대학원) ;
  • 이정상 (서울대학교 기계항공공학부 대학원) ;
  • 김종암 (서울대학교 기계항공공학부) ;
  • 노오현 (서울대학교 기계항공공학부)
  • Published : 2003.08.01

Abstract

Aerodynamic characteristics over Micro Aerial Vehicle(MAV) in low Reynolds number regime are numerically studied using 3-D unsteady, incompressible Navier-Stokes flow solver with single partitioning method for multi-block grid. For more efficient computation of unsteady flows, this flow solver is parallel-implemented with MPl(Message Passing Interface) programming method. Firstly, MAV wing with not complex geometry is considered and then, we analyze aerodynamic characteristics over full MAV configuration varying the angle of attack. Present computational results show a better agreement with the experimental data by MACDL(Micro Aerodynamic Control and Design Lab.), Seoul National University. We can also find the conceptually designed MAV by MACDL has the static stability.

3차원 비정상, 비압축성 Navier-Stokes 방정식 해석코드를 이용하여, 초소형 비행체 주위에 형성되는 저 레이놀즈수 유동장의 공력 특성을 연구하였다. 비정상 유동장의 효율적인 계산을 위하여, 개발된 코드는 MPI 프로그래밍 기법을 이용하여 병렬처리 하였으며, single partitioning 방법을 적용하여 3차원 형상에 대한 multi-block 격자계를 효율적으로 해석 하였다. 비교적 형상이 복잡하지 않은 초소형 비행체 주위 날개에 대해 해석한 후 초소형 비행체 전 형상에 대해 받음각을 변화시키며 공력계수 및 정안정성을 살펴보았다. 해석 결과, 서울대학교 미소공기역학실험실에서 수행한 아음속 풍동 실험데이터와 비교하여 보았을 때 대체로 잘 일치하였으며, 개념 설계한 비행체가 공기역학적으로 정안정성을 갖고 있음을 보일 수 있었다.

Keywords

References

  1. J. C. Muti Lin and L. L. Pauley, "Low-Reynolds-Number Separation on an Airfoil," AIAA Journal, Vol. 34, No. 8, August 1996.
  2. H. Ok, "Development of an incompressible Navier-Stokes Solver and Its Application to the Calculation of Separated Flows," Ph. D. Dissertation, Dep's of Aeronautics and Astronautics Eng., Univ. of Washington, 1993.
  3. S. Yoon, and D. Kwak, "Three-Dimensional Incompressible Navier-Stokes Solver Using Lower-Upper Symmetric-Gauss-Seidel Algorithm," AIAA Journal, Vol. 29, June 1991, pp. 874-875 https://doi.org/10.2514/3.10671
  4. C. Kim, "Sensitivity Analysis for the Navier-Stokes Equations with Two-Equation Turbulence Models and Its Applications," PH. D. Dissertation, Dep's of Aerospace Eng., Seoul Nat'l Univ., Seoul, Korea, Feb. 2001.
  5. S. E. Rogers, and D. Kwak, "Upwind Differenceing Scheme for the Time Accurate Incompressible Navier-Stokes Equations," AIAA Journal, Vol. 28, No. 2, Feb. 1990, pp. 253-262 https://doi.org/10.2514/3.10382
  6. S. E. Rogers and D. Kwak, "Steady and Unsteady Solutions of the Incompressible Navier-Stokes Equation," AIAA Journal, Vol. 29, No. 4, April 1991.
  7. Yukiya Aoyama and Jun Nakano, "RS/6000 SP:Practical MPI Programming," IBM, SG24-5380-00
  8. L. F. Crabtree, "Effect of Leading-Edge Separation on Thin Wings in Two-Dimensional Incompressible Flow," Journal of The Aeronautical Sciences, August 1957, pp. 597-604
  9. Tuncer Cebeci, Hsun J. Chen and Beng P. Lee, "Calculation of Three-Dimensional Low Reynolds Number Flows," Journal of Aircraft, Vol. 31, No. 3, pp. 564-571 https://doi.org/10.2514/3.46531
  10. 이정상,김종암, 노오현, "저 레이놀즈수유동에서 Flapping-Airfoil의 수치적 공력특성 연구," 한국항공우주학회지, 제30권, 제4호, 2002.
  11. Robert I. Bowles, "Transition to turbulent flow in aerodynamics," The Royal Society, 2000, pp. 245-260
  12. C. P. Haggmark, A. A. Bakchinov and P. H. Alfredsson, "Experiment on a two-dimensional laminar separation bubble," The Royal Society, 2000, pp. 3193-3205
  13. Thomas J. Muller, "Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications," AIAA, Vol. 195, Progress in Astronautics and Aeronautics.