DOI QR코드

DOI QR Code

A Study on Fluid Flow and Heat Transfer of a Corrugated Structure for Crossflow Reduction of Impingement Jet

충돌제트에서의 횡방향 유동 감소를 위한 파형 구조의 유동 및 열전달에 관한 연구

  • Received : 2016.12.13
  • Accepted : 2017.03.12
  • Published : 2017.05.01

Abstract

Impingement jets have been applied in a wide variety of fields as they provide significantly high heat transfer on the impingement-jet stagnation zone. However, the crossflow in an impingement chamber developed by spent wall jets can disrupt and deflect the downstream jets in the array, leading to a decrease in the cooling performance of an array of impingement jets. A numerical analysis is made of the fluid flow and heat transfer characteristics in a corrugated structure that traps the spent air in the corrugations between impingement jets and reduces crossflow effects on downstream jets. All computations are performed by considering a three-dimensional, steady, and incompressible flow by using the ANSYS-CFX 15.0 code. The effects of the configuration parameters of the corrugated structure on crossflow reduction of the array of impingement jets are presented and discussed.

충돌제트는 제트가 충돌하는 정체 영역에 매우 높은 열전달을 제공하기 때문에 다양한 분야에서 적용되고 있다. 그러나 제트가 벽면에 부딪친 후 벽면 제트에 의해 야기되는 충돌 챔버 내의 횡방향 유동은 여러 개의 제트로 구성된 배열제트인 경우 하류에 있는 제트 유동을 방해하거나 휘게 할 수 있으며, 이로 인해 배열 충돌제트의 냉각 성능은 감소하게 된다. 파형 구조는 하류 제트에서의 횡방향 유동영향을 줄이기 위해 인접한 충돌 제트 사이에 있는 파형 속에 사용된 냉각 공기를 유입시키는 역할을 하며, 이러한 파형 구조에서의 유동 및 열전달 특성에 대해 수치해석을 수행하였다. 3차원, 정상상태, 비압축성 유동으로 고려하고 해석하였으며 ANSYS-CFX 15.0 코드를 사용하였다. 파형 구조의 형상 변수가 배열 충돌제트의 횡방향 유동 억제에 미치는 영향을 제시하고 분석하였다.

Keywords

References

  1. Zuckerman, N. and Lior, N., 2006, "Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling," Advanced in Heat Transfer," Vol. 39, pp. 565-631.
  2. Amano, R. S. and Sundėn, B., 2014, "Impingement Jet Cooling in Gas Turbines," WIT Press, Boston, pp. 1-154.
  3. Hiu, H, H. T. and Hua, J., 2004, "Three-Dimensional Integrated Thermodynamic Simulation for Wing Anti-Icing System," Journal of Aircraft, Vol. 41, No. 6, pp. 1291-1297. https://doi.org/10.2514/1.5594
  4. Zhu, X. W. and Zhao, J. Q., 2016, "Study on Helium Impingement Cooling for a Sharp Leading Edge Subject to Aerodynamic Heating," Applied Thermal Engineering, Vol. 107, pp. 253-263. https://doi.org/10.1016/j.applthermaleng.2016.06.013
  5. Wang, B., Guo, X., Xie, O., Wang, Z. and Wang, G., 2016, "Heat Transfer Characteristic Research During Jet Impinging on Top/Bottom Hot Steel Plate," International Journal of Heat and Mass Transfer, Vol. 101, pp. 844-851. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.083
  6. Florschuetz, L. W., Truman, C. R. and Metzger, D. E., 1981, "Streamwise Flow and Heat transfer Distributions for Jet Array Impingement with Crossflow," Journal of Heat Transfer, Vol. 103, pp. 337-342. https://doi.org/10.1115/1.3244463
  7. Kercher, D. M. and Tabakoff, W., 1970, "Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air," Journal of Engineering for Power, Vol. 92, pp. 73-82. https://doi.org/10.1115/1.3445306
  8. Esposito, E. I., Ekkad, S. V., Kim, Y. and Dutta, P., 2007, "Comparing Extended Port and Corrugated Wall Jet Impingement Geometry for Combustor Liner Backside Cooling," Proceedings of ASME Turbo Expo 2007: Power for Land, Sea and Air, Montreal, Canada, GT2007-27390.
  9. Chi, Z., Kan, R., Ren, J. and Jiang, H., 2013, "Experimental and Numerical Study of the Anti-Crossflows Impingement Cooling Structure," International Journal of Heat and Mass Transfer, Vol. 64, pp. 567-580. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.052
  10. Yang, L., Li, W., Chi, Z., Ren, J. and Jiang, H., 2014, "Effect of Corrugated Orifice and Pin-Fin on Multiple Array Impingement Cooling with Low Nozzle to Target Distance," Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Dusseldorf, Germany, GT2014-25494.
  11. Correia, V. H. S., 1996, "Impingement Cooling Apparatus for Turbine Shrouds having Ducts of Increasing Cross-Sectional Area in the Direction of Post-Impingement Cooling Flow," US Patent No. 5480281.
  12. Haumann, J., Knopfli, A., Sattelmayer, T. and Tresch, R., 1995, "Apparatus for Impingement Cooling," US Patent No. 5467815.
  13. Isman, M. K. Morris, P. J. and Can M., 2016, "Investigation of Laminar to Turbulent Transition Phenomena Effects on Impingement Heat Transfer," Heat and Mass Transfer, Vol. 52, pp. 2027-2036. https://doi.org/10.1007/s00231-015-1719-8
  14. ANSYS-CFX, 2009, ANSYS-CFX Solver Theory Guide, ANSYS Inc., Canonsburg.
  15. Menter, F. R., 1994, "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA Journal, Vol. 32, No. 8, pp. 1598-1605. https://doi.org/10.2514/3.12149