DOI QR코드

DOI QR Code

Simulation of Woody Leaf Netted Venation Based on Optimization Technique

최적화기법에 의한 나뭇잎 그물맥 시뮬레이션

  • Chen, Lei (Dept. of Mechanical Engineering, Graduate School, Kunsan Nat'l Univ.) ;
  • Li, Weizheng (Dept. of Mechanical Engineering, Graduate School, Kunsan Nat'l Univ.) ;
  • Jang, Gang Won (Faculty of Mechanical and Aerospace Engineering, Sejong Univ.) ;
  • Baek, Tae Hyun (School of Mechanical and Automotive Engineering, Kunsan Nat'l Univ.)
  • 첸레이 (군산대학교 대학원 기계공학과) ;
  • 리웨이정 (군산대학교 대학원 기계공학과) ;
  • 장강원 (세종대학교 기계항공우주공학부) ;
  • 백태현 (군산대학교 기계자동차공학부)
  • Received : 2012.03.23
  • Accepted : 2013.01.12
  • Published : 2013.04.01

Abstract

This study attempts to simulate the structure of a woody leaf netted venation system by using topology optimization techniques. Based on finite element method (FEM) analysis of an incompressible fluid, a topology optimal design is applied to those woody leaf netted venation models. To solve the transverse shear locking problem of a thin plate caused by the Mindlin-Reissner plate model where a leaf netted venation is assumed to be a thin plate, a P1-nonconforming element and selective reduced integration are employed. Topology optimal design is applied to multiple physical domains. Combined with the Darcy-Stokes flow problems and extended to the optimal design of fluid channels, the multiple physical models of the flow system are analyzed and venation patterns of leafs are simulated. The calculated optimal shapes are compared with the natural shapes of woody leaf venation patterns. This interdisciplinary approach may improve our understanding of the leaf venation system.

본 연구에서는 나뭇잎 그물맥 구조를 시뮬레이션하기 위해 잎 그물맥을 상 하 보강 박막판과 비압축성 유체가 흐르는 중간층 구조로 모델링하여 다중물리 현상으로 간주하고, 위상 최적화법을 다중물리 설계영역에 적용하였다. Mindlin-Reissner 판 모델에 기인한 횡방향 전단잠금 문제를 해결하기 위해 P1 비적합 요소와 선택 감소 적분법을 이용하였다. 다시-스토크스 유체 유동 채널에 대해 최적설계법을 적용하여 유동 시스템의 다중물리 모델을 해석하였으며, 잎의 그물맥 시뮬레이션을 수행하였다. 계산된 최적형상을 잎의 자연 그물 맥 패턴과 비교하였으며 비슷한 형상을 얻었다. 이와 같은 학제간 연구를 통해 나무 잎 그물맥 시스템을 이해할 수 있는 계기가 될 것으로 사료된다.

Keywords

References

  1. Sigmund, O. and Clausen, P. M., 2005, "Topology Optimization Using a Mixed Formulation: An Alternative Way to Solve Pressure Load Problems," Computer Methods in Applied Mechanics and Engineering, Vol. 196, pp. 1874-1889.
  2. Bruggi, M. and Venini, P., 2006, "Topology Optimization of Incompressible Media Using Mixed Finite Elements," Computer Methods in Applied Mechanics and Engineering, Vol. 196, pp. 3151-3164.
  3. Bendsoe, M. P., 1989, "Optimal Shape Design as a Material Distribution Problem," Struct. Optim. Vol. 1, pp. 193-202. https://doi.org/10.1007/BF01650949
  4. Brenner, S. and Sung, L., 1992, "Linear Finite Element Methods for Planar Elasticity," Mathematics of Computation, Vol. 59, pp. 321-338. https://doi.org/10.1090/S0025-5718-1992-1140646-2
  5. Douglas, J. Jr., Santos, J. E. and Sheen, D., 2000, "A Nonconforming Mixed Finite Element Method for Maxwell's Equations," Mathematical Models and Methods in Applied Sciences, Vol. 10, No. 4, pp. 596-613.
  6. Douglas, Jr. J., Santos, J. E. and Sheen, D., 2001, "Nonconforming Galerkin Methods for the Helmholtz Problem," Numerical Methods for Partial Differential Equations, Vol. 17, pp. 475-494. https://doi.org/10.1002/num.1023
  7. Park, C. and Sheen, D., 2003, "P1-Nonconforming Quadrilateral Finite Element Method for Second-Order Elliptic Problems," SIAM Journal on Numerical Analysis, Vol. 41, No. 2, pp. 624-640. https://doi.org/10.1137/S0036142902404923
  8. Borrvall, T. and Petersson, J., 2003, "Topology Optimization of Fluids in Stokes Flow," International Journal for Numerical Methods in Fluids, Vol. 41, pp. 77-107. https://doi.org/10.1002/fld.426
  9. Panganiban, H., Jang, G. W. and Chung, T. J., 2010, "P1-Nonconforming Quadrilateral Finite Element for Topology Optimization," International Journal for Numerical Method in Engineering, Vol. 84, pp. 685-707. https://doi.org/10.1002/nme.2912
  10. Wiker, N., Klarbring, A. and Borrvall, T., 2007, "Topology Optimization of Regions of Darcy and Stokes Flow," International Journal for Numerical Methods in Engineering, Vol. 69, pp. 1374-1404. https://doi.org/10.1002/nme.1811
  11. James M. V., Wayne T. S., Gregory J. H. and Barton D. C., 2000, "Leaf Water Relations and Sapflow in Eastern Cottonwood Trees Planted for Phytoremediation of a Groundwater Pollutant," International Journal of Phytoremediation, Vol. 2, pp. 53-73. https://doi.org/10.1080/15226510008500030
  12. Smith, D. M. and Allen, S. J., 1996, "Measurement of Sap Flow in Plant Stems," Journal of Experimental Botany, Vol. 47, pp, 1833-1844. https://doi.org/10.1093/jxb/47.12.1833
  13. Roth-Nebelsick, A., Uhl, D., Mosbrugger, V. and Kerp, H. 2001, "Evolution and Function of Leaf Venation Architecture: A Review," Annals of Botany, Vol. 87, pp. 553-566. https://doi.org/10.1006/anbo.2001.1391