• Title/Summary/Keyword: incidence : Fusarium

Search Result 79, Processing Time 0.028 seconds

Identification and Chemotype Profiling of Fusarium Head Blight Disease in Triticale (국내 재배 트리티케일에 발생한 붉은곰팡이병의 다양성 및 독소화학형 분석)

  • Yang, Jung-Wook;Kim, Joo-Yeon;Lee, Mi-Rang;Kang, In-Jeong;Jeong, Jung-Hyun;Park, Myoung Ryoul;Ku, Ja-Hwan;Kim, Wook-Han
    • Research in Plant Disease
    • /
    • v.27 no.4
    • /
    • pp.172-179
    • /
    • 2021
  • This study aimed to assess the disease incidence and distribution of toxigenic in Korean triticale. The pathogen of triticale that cause Fusarium head blight were isolated from five different triticale cultivars that cultivated in Suwon Korea at 2021 year. The 72 candidate were classified as a Fusarium asiaticum by morphology analysis and by ITS1, TEF-1α gene sequence analysis. And the results of pathogenicity with 72 isolates on seedling triticale, 71 isolates were showed disease symptom. Also, seven out of 71 Fusarium isolates were inoculated on the wheat, to test the pathogenicity on the different host. The results showed more low pathogenicity on the wheat than triticale. The results of analysis of toxin type with 72 isolates, 64.6% isolates were produced nivalenol type toxin and other 4.6% and 30.8% isolates were produce 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol, respectively. To select fungicide for control, the 72 Fusarium isolates were cultivated on the media that containing four kinds fungicide. The captan, hexaconazole, and difenoconazole·propiconazole treated Fusarium isolates were not showed resistance response against each fungicide. However, six isolates out of 72 isolates, showed resistance response to fludioxonil. This study is first report that F. asiaticum causes Fusarium head blight disease of triticale in Korea.

Characterization of the Maize Stalk Rot Pathogens Fusarium subglutinans and F. temperatum and the Effect of Fungicides on Their Mycelial Growth and Colony Formation

  • Shin, Jong-Hwan;Han, Joon-Hee;Lee, Ju Kyong;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.397-406
    • /
    • 2014
  • Maize is a socioeconomically important crop in many countries. Recently, a high incidence of stalk rot disease has been reported in several maize fields in Gangwon province. In this report, we show that maize stalk rot is associated with the fungal pathogens Fusarium subglutinans and F. temperatum. Since no fungicides are available to control these pathogens on maize plants, we selected six fungicides (tebuconazole, difenoconazole, fluquinconazole, azoxystrobin, prochloraz and kresoxim-methyl) and examined their effectiveness against the two pathogens. The in vitro antifungal effects of the six fungicides on mycelial growth and colony formation were investigated. Based on the inhibition of mycelial growth, the most toxic fungicide was tebuconazole with 50% effective concentrations ($EC_{50}$) of < $0.1{\mu}g/ml$ and $EC_{90}$ values of $0.9{\mu}g/ml$ for both pathogens, while the least toxic fungicide was azoxystrobin with $EC_{50}$ values of 0.7 and $0.5{\mu}g/ml$ for F. subglutinans and F. temperatum, respectively, and $EC_{90}$ values of > $3,000{\mu}g/ml$ for both pathogens. Based on the inhibition of colony formation by the two pathogens, kresoxim-methyl was the most toxic fungicide with complete inhibition of colony formation at concentrations of 0.1 and $0.01{\mu}g/ml$ for F. subglutinans and F. temperatum, respectively, whereas azoxystrobin was the least toxic fungicide with complete inhibition of colony formation at concentrations > $3,000{\mu}g/ml$ for both pathogens.

Genetic Diversity of Fusarium proliferatum Populations from Maize, Onion, Rice and Sugarcane in Iran Based on Vegetative Compatibility Grouping

  • Alizadeh, Alireza;Javan-Nikkhah, Mohammad;Fotouhifar, Khalil-Berdi;Motlagh, Elahe Rabiee;Rahjoo, Vahid
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.216-222
    • /
    • 2010
  • Fusarium proliferatum is the causal agent of stalk and root rot disease of maize, foot rot disease of rice, basal and root rot disease of onion and knife cut disease of sugarcane in Iran. In recent years, incidence and severity of these diseases have been increased in Iran. Fifty seven F. proliferatum single-spore isolates collected from diseased maize, rice, onion and sugarcane plants at different areas were used to study genetic diversity by determination of vegetative compatibility groups (VCGs). Chlorate-resistant nitrate non-utilizing (nit) mutants were recovered from selected isolates of F. proliferatum and used in complementation tests. All isolates in which both nit1 and NitM (or nit3) mutants were recovered, demonstrated self-compatibility. Vegetative compatibility tests by pairing nit mutants identified 30 VCGs among 57 isolates. Twenty-three isolates belonged to singlemember VCGs and the remaining 34 isolates, belonged to other seven multimember VCGs. Segregation of F. proliferatum isolates obtained from various area and host plants into different VCGs in Iran is reported for the first time. In this study, none of isolates obtained from rice complemented with any other isolates from onion and sugarcane and, non complementation occurred between onion and sugarcane isolates. Also, only one complementation occurred between one isolate of maize and one isolate of sugarcane and rice. Thus, a correlation between VCGs grouping and host preferences was founded. It is concluded that natural populations of F. proliferatum in Iran are probably genetically divergent and include isolates representing a potential risk for disease development.

Natural Occurrence of Fusarium Head Blight and Its Mycotoxins in 2010-harvested Barley and Wheat Grains in Korea (2010년산 맥류의 붉은곰팡이병 발생 및 Fusarium 곰팡이독소 자연발생)

  • Ryu, Jae-Gee;Lee, Soo-Hyung;Son, Seung-Wan;Lee, Seung-Ho;Nam, Young-Ju;Kim, Mi-Ja;Lee, Theresa;Yun, Jong-Chul
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.272-279
    • /
    • 2011
  • Fusarium species are worldwide causal agents of Fusarium head blight (FHB) in cereals such as barley and wheat. Their toxigenic potential is a health risk for both humans and animals. To survey the natural occurrence of FHB and mycotoxins produced by Fusarium, total 126 barley or wheat grains grown in 2009-2010 season in Korea were collected. The incidence of FHB was 30.7% in silage barley, 26.9% in wheat, 20.7% in naked barley, 19.4% in malting barley, 16.4% in unhulled barley. Overall FHB incidence of barley and wheat in 2010 was 23.0% and 10% higher than that of 2009. The incidences and level of deoxynivalenol (DON), nivalenol (NIV), and zearalenone (ZEA) were 34%, 0.89 mg/kg, 84.9%, 1.86 mg/kg, and 10.3%, 0.06 mg/kg respectively. The both levels and incidences of NIV were found to be highest in barley, whereas the level of DON was found to be highest in wheat. Incidences of DON and NIV and the level of NIV in the samples from southern regions of Korea were higher than those from central region, whereas the level of DON from central region was higher than that from southern regions. This is the first paper demonstrating regional difference in natural occurrence of DON and NIV in wheat and barley.

Identification and Chemotype Profiling of Fusarium Species in Korean Oat (국내 귀리의Fusarium속 균의 다양성 및 독소 화학형)

  • Choi, Jung-Hye;Nah, Ju-Young;Jin, Hyun-Suk;Lim, Su-Bin;Paek, Ji-Seon;Lee, Mi-Jeong;Jang, Ja-Yeong;Lee, Theresa;Hong, Sung Kee;Kim, Jeomsoon
    • Research in Plant Disease
    • /
    • v.25 no.4
    • /
    • pp.157-163
    • /
    • 2019
  • This study aimed to assess the incidence and distribution of toxigenic fungi in Korean oat. Toxigenic fungi were isolated from oat samples collected from 12 oat fields from heading to harvest in 2017 and 2018. A total of 745 fungal colonies were isolated based on morphology and identified using marker genes. About 92% of the fungal isolates were Fusarium spp. and others were Penicillium (5.9%) and Aspergillus (2.1%). Fusarium isolates comprised mostly of F. asiaticum (83.1%), followed by F. incarnatum (5.4%), F. proliferatum (3.5%), F. fujikuroi (2.8%), F. tricinctum species complex (FTSC) 11 (1.5%) and F. graminearum (1.0%). About 97% of F. asiaticum was nivalenol type, and 3-acetyl deoxynivalenol (3.2%) and 15-acetyl deoxynivalenol (0.4%) types also were found. Pathogenicity test of the selected Fusarium isolates revealed that F. asiaticum isolates have a wide range of virulence depending on the tested plants. F. graminearum and FTSC 11 isolates from blighted spikelets were the most virulent in naked oat. All Fusarium isolates (n=18) except one (FTSC 11) produced nivalenol (0.2-7.6 ㎍/g), deoxynivalenol (0.03-6.1 ㎍/g), and zearalenone (0.1-27.0 ㎍/g) on rice medium. This study is first report that F. asiaticum causes Fusarium head blight disease of oat in Korea. These findings demonstrate the dominance of F. asiaticum in oat agroecosystems as in rice, wheat and barley in Korea.

Review of Disease Incidence of Major Crops in 2000 (2000년 농작물 병해 발생 개황)

  • Kim, Choong-Hoe
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • Climate in the year of 2000 was characterized as a long severe drought in tile spring, unusually high and low temperature in summer, two times of typoons, and floods by heavy rains in fall. Rice leaf and panicle blast and bacterial grain rot occurred severely comparing with 1999 and Bipolaris leaf spot spread over tile country. Phytophthora blight and anthracnose in red-pepper became epidemic especially in the late season causing severe yield losses. Tomato fusaruim wilt, CGMMV, powdery mildew, and sudden wilt syndrom of cucurbits and strawberry powdery mildew were also severe in 2000. In garlic, sclerotium rot occurred severely mainly due to the frequent rainfalls in planting time and much snowfalls in 1999's winter. Spring potato had severe infection of viruses due to a long spring drought, and fall potato had high incidence of bacterial soft rot and bacterial wilt due to fall floods by heavy rains. In sweet potato fusarium wilt was the most severe as in other year. Disease incidence of apple and pear trees was rotatively mild compared with previous years. In wheat and barley, Gibberella petch rarely occurred because of spring drought.

  • PDF

Incidence of Fusarium Wilt of Sesame (Sesamum indicum L.) in Relation to Air Temperature (참깨 시들음병(病) 발병(發病)과 재배기간중(栽培期間中) 온도(溫度)와의 관계(關係))

  • KANG, S.W.;CHO, D.J.;Lee, Y.S.
    • Korean journal of applied entomology
    • /
    • v.24 no.3 s.64
    • /
    • pp.123-127
    • /
    • 1985
  • Incidence of the Fusarium wilt caused by F. oxysporum f. sp. vasinfectum of sesame (var. Kwangsan) was remarkably influenced by seeding date and mean air temperature in the field of two or three year's continuous cropping with sesame in 1983 and 1985. Sesame were seeded on six different dates from April 20 to July 5. Air temperature was checked daily at the meteorological station near the experimental field. Low($16{\sim}20^{\circ}C$) and high temperature($20{\sim}25^{\circ}C$) periods were provisionally devided, based on every ten-day mean daily temperature during field experiment for last ten years, which corresponded to before and after June 15 in Jinju, Gyeong-nam. Infection rates were 83.7%, 68.2% and 59.4% in the plants grown for 55 days (seeding date: April 20), 40 days(May 5) and 25 days(May 20) under low temperature. On the other hand, infection rates were below 3% in those plots seeded during high temperature period. The longer the growth period exposed to low temperature, the higher was infection rates. It is interesting to note that 40 days old seedling or older are prone to severe infection compared to the younger ones, in higher temperature of $20{\sim}25^{\circ}C$. Therefore, seedlings in vegetative growth stage are less prone to infection than these in reproductive growth stage. The result showed that air temperature during sesame growth was one of the most important factor affecting the incidence of Fusarium wilt. This suggested that sesame crop, which is of tropical origin, has been predisposed to Fusarium wilt, when the plants were exposed to low temperature of $16{\sim}20^{\circ}C$.

  • PDF

Chemosensitization of Fusarium graminearum to Chemical Fungicides Using Cyclic Lipopeptides Produced by Bacillus amyloliquefaciens Strain JCK-12

  • Kim, K.;Lee, Y.;Ha, A.;Kim, Ji-In;Park, A.R.;Yu, N.H.;Son, H.;Choi, G.J.;Park, H.W.;Lee, C.W.;Lee, T.;Lee, Y.W.;Kim, J.C.
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.44-44
    • /
    • 2018
  • Fusarium head blight (FHB) caused by infection with Fusarium graminearum leads to enormous losses to crop growers, and may contaminate grains with a number of Fusarium mycotoxins that pose serious risks to human and animal health. Antagonistic bacteria that are used to prevent FHB offer attractive alternatives or supplements to synthetic fungicides for controlling FHB without the negative effects of chemical management. Out of 500 bacterial strains isolated from soil, Bacillus amyloliquefaciens JCK-12 showed strong antifungal activity and was considered a potential source for control strategies to reduce FHB. B. amyloliquefaciens JCK-12 produces several cyclic lipopeptides (CLPs) including iturin A, fengycin, and surfactin. Iturin A inhibits spore germination of F. graminearum. Fengycin or surfactin alone did not display any inhibitory activity against spore germination at concentrations less than 30 ug/ml, but a mixture of iturin A, fengycin, and surfactin showed a remarkable synergistic inhibitory effect on F. graminearum spore germination. The fermentation broth and formulation of B. amyloliquefaciens JCK-12 strain reduced the disease incidence of FHB in wheat. Furthermore, co-application of B. amyloliquefaciens JCK-12 and chemical fungicides resulted in synergistic in vitro antifungal effects and significant disease control efficacy against FHB under greenhouse and field conditions, suggesting that B. amyloliquefaciens JCK-12 has a strong chemosensitizing effect. The synergistic antifungal effect of B. amyloliquefaciens JCK-12 and chemical fungicides in combination may result from the cell wall damage and altered cell membrane permeability in the phytopathogenic fungi caused by the CLP mixtures and subsequent increased sensitivity of F. graminearum to fungicides. In addition, B. amyloliquefaciens JCK-12 showed the potential to reduce trichothecenes mycotoxin production. The results of this study indicate that B. amyloliquefaciens JCK-12 could be used as an available biocontrol agent or as a chemosensitizer to chemical fungicides for controlling FHB disease and as a strategy for preventing the contamination of harvested crops with mycotoxins.

  • PDF

Incidence, Molecular Characteristics and Pathogenicity of Gibberella fujikuroi Species Complex Associated with Rice Seeds from Asian Countries

  • Jeon, Young-Ah;Yu, Seung-Hun;Lee, Young Yi;Park, Hong-Jae;Lee, Sokyoung;Sung, Jung Sook;Kim, Yeon-Gyu;Lee, Ho-Sun
    • Mycobiology
    • /
    • v.41 no.4
    • /
    • pp.225-233
    • /
    • 2013
  • Gibberella fujikuroi species complex (GFSC) was isolated from rice (Oryza sativa L.) seed samples from ten Asian countries and investigated for incidence of GFSC, molecular characteristics, and pathogenicity. Regardless of geographic origin, GFSC was detected with incidences ranging from 3% to 80%. Four species, Fusarium fujikuroi, F. concentricum, F. proliferatum, and F. verticillioides, were found to show an association with rice seeds, with F. fujikuroi being the predominant species. In phylogenetic analyses of DNA sequences, no relationship was found between species, isolates, and geographic sources of samples. Unidentified fragments of the ${\beta}$-tubulin gene were observed in ten isolates of F. fujikuroi and F. verticillioides. With the exception of three isolates of F. fujikuroi, F. fujikuroi, F. proliferatum, and F. verticillioides were found to have FUM1 (the fumonisin biosynthetic gene); however, FUM1 was not found in isolates of F. concentricum. Results of pathogenicity testing showed that all isolates caused reduced germination of rice seed. In addition, F. fujikuroi and F. concentricum caused typical symptoms of bakanae, leaf elongation and chlorosis, whereas F. proliferatum and F. verticillioides only caused stunting of seedlings. These findings provide insight into the characteristics of GFSC associated with rice seeds and might be helpful in development of strategies for management of bakanae.

Mathematical analysis on the effect of mineral nutrients on the growth rate of Chlorella (Chlorella의 성장에 미치는 무기영양의 영향에 관한 반응속도론적 연구)

  • 장남기
    • Korean Journal of Microbiology
    • /
    • v.7 no.3
    • /
    • pp.107-114
    • /
    • 1969
  • Relationship of soil properties and seasonal variation on microbilogical population to-continuous culture and first-time culture of ginseng was investigated by bimonthly from May 1976 to January 1977. pH and P contents of 2 years continuous culture of soil were higher than other culture plot of soil, and contraty to the above, 2 years first-time culture of ginseng soil was conplot of soil, and contraty to the above, 2 years first-time culture of ginseng soil was contained more potassium contents than other culture plot of soil. In microbiological fluctuation with seasonr in various soil conditions, the population, trends of Fusarium spp., Erwiniaspp., and flourescent Psedudomonas spp. were increased in May and July in general, but decreased in the other month. It was observed that in all type of soil, Fusarium spp. was distributed in abundance in and on rihizosphere, and decreased the propagules numbers as soil depth increase. The numbers of Erwinia spp. and fluorescent Pseudo-monas spp. were distributed greater in numbers on the surface zone of soil depth decreasing the numbers along the soil layer increase, and also in 2years continuous culture of soil especially, a great numbers of Erwinia spp. and fluorescent Pseudomonas were evenly distributed in surface zone and rhizosphere. Ginseng disease with a high incidence of bacterial disease in continuous culture of 2 and 4 years was seemed to be associated with soil bacteria that was high in numbers of Erwinia spp. and fluorescent Pseudomonas spp. in May and July.

  • PDF