DOI QR코드

DOI QR Code

Identification and Chemotype Profiling of Fusarium Species in Korean Oat

국내 귀리의Fusarium속 균의 다양성 및 독소 화학형

  • Choi, Jung-Hye (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Nah, Ju-Young (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jin, Hyun-Suk (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lim, Su-Bin (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Paek, Ji-Seon (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Mi-Jeong (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jang, Ja-Yeong (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Theresa (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hong, Sung Kee (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Jeomsoon (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
  • 최정혜 (국립농업과학원 유해생물팀) ;
  • 나주영 (국립농업과학원 유해생물팀) ;
  • 진현숙 (국립농업과학원 유해생물팀) ;
  • 임수빈 (국립농업과학원 유해생물팀) ;
  • 백지선 (국립농업과학원 유해생물팀) ;
  • 이미정 (국립농업과학원 유해생물팀) ;
  • 장자영 (국립농업과학원 유해생물팀) ;
  • 이데레사 (국립농업과학원 유해생물팀) ;
  • 홍성기 (국립농업과학원 작물보호과) ;
  • 김점순 (국립농업과학원 유해생물팀)
  • Received : 2019.11.17
  • Accepted : 2019.12.14
  • Published : 2019.12.31

Abstract

This study aimed to assess the incidence and distribution of toxigenic fungi in Korean oat. Toxigenic fungi were isolated from oat samples collected from 12 oat fields from heading to harvest in 2017 and 2018. A total of 745 fungal colonies were isolated based on morphology and identified using marker genes. About 92% of the fungal isolates were Fusarium spp. and others were Penicillium (5.9%) and Aspergillus (2.1%). Fusarium isolates comprised mostly of F. asiaticum (83.1%), followed by F. incarnatum (5.4%), F. proliferatum (3.5%), F. fujikuroi (2.8%), F. tricinctum species complex (FTSC) 11 (1.5%) and F. graminearum (1.0%). About 97% of F. asiaticum was nivalenol type, and 3-acetyl deoxynivalenol (3.2%) and 15-acetyl deoxynivalenol (0.4%) types also were found. Pathogenicity test of the selected Fusarium isolates revealed that F. asiaticum isolates have a wide range of virulence depending on the tested plants. F. graminearum and FTSC 11 isolates from blighted spikelets were the most virulent in naked oat. All Fusarium isolates (n=18) except one (FTSC 11) produced nivalenol (0.2-7.6 ㎍/g), deoxynivalenol (0.03-6.1 ㎍/g), and zearalenone (0.1-27.0 ㎍/g) on rice medium. This study is first report that F. asiaticum causes Fusarium head blight disease of oat in Korea. These findings demonstrate the dominance of F. asiaticum in oat agroecosystems as in rice, wheat and barley in Korea.

본 연구에서는 귀리에서 독성곰팡이 발생현황을 평가하기 위해 2017년 2018년 4월부터 6월까지 귀리 재배지 강진, 정읍을 정기적으로 모니터링 하였다. 총 745개의 곰팡이 균주를 형태학적 방법으로 분리한 후 마커 유전자 염기서열을 분석하여 동정하였다. 분리된 곰팡이의 약 92%가 Fusarium속 균주였고, Penicillium속(5.9%)과 Aspergillus속(2.1%) 순으로 분리되었다. Fusarium속 균주의 대부분이 F. asiaticum (83.1%)이었고, F. incarnatum (5.4%), F. proliferatum (3.5%), F. fujikuroi (2.8%), F. tricinctum species complex (FTSC) 11 (1.5%), F. graminearum (1.0%) 순으로 많이 분리되었다. F. asiaticum의 약 97%가 nivalenol 독소화학형이 있었고, 3-acetyl deoxynivalenol (3.2%) 독소화학형과 15-acetyl deoxynivalenol (0.4%) 독소화학형도 발견되었다. 선발된 Fusarium 균들의 병원성 실험결과 F. asiaticum이 실험에 사용된 모든 식물체에서 다양한 범위의 병원성을 나타내었다. 병증이 있는 종실에서 분리된 F. graminearum and FTSC 11 균주들은 쌀귀리에서 강한 병원성을 나타내었다. 또한 FTSC 11 균주를 제외한 모든 균주들이 쌀배지에서 nivalenol (0.2-7.6 ㎍/g), deoxynivalenol (0.03-6.1 ㎍/g), zearalenone (0.1-27.0 ㎍/g)을 생성하였다. 본 연구는 국내에서는 처음 보고되는 F. asiaticum에 의한 귀리의 붉은 곰팡이병 사례이다. 본 연구의 결과는 밀, 보리, 벼와 마찬가지로 F. asiaticum이국내귀리에서우점종임을보여준다.

Keywords

References

  1. Charalampopoulos, D., Wang, R., Pandiella, S. S. and Webb, C. 2002. Application of cereals and cereal components in functional foods: a review. Int. J. Food Microbiol. 79: 131-141. https://doi.org/10.1016/S0168-1605(02)00187-3
  2. Chi, M.-H., Park, S.-Y. and Lee, Y.-H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25: 108-111. https://doi.org/10.5423/PPJ.2009.25.1.108
  3. Commission of the European Communities. 2006. Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Commission of the European Communities, Brussels, Belgium. 364 pp.
  4. Fernandez, M. R. and Chen, Y. 2005. Pathogenicity of Fusarium species on different plant parts of spring wheat under controlled conditions. Plant Dis. 89: 164-169. https://doi.org/10.1094/PD-89-0164
  5. Ferrigo, D., Raiola, A. and Causin, R. 2016. Fusarium toxins in cereals: occurrence, legislation, factors promoting the appearance and their management. Molecules 21: E627. https://doi.org/10.3390/molecules21050627
  6. Food and Agriculture Organization of the United Nations. 2017. FAOSTAT Database, Food and agriculture data. Food and Agriculture Organization of the United Nations, Rome, Italy.
  7. Jang, J. Y., Kim, S., Jin, H. S., Baek, S. G., O, S., Kim, K. et al. 2018. Occurrence of toxigenic Fusarium spp. and zearalenone in scabby rice grains and healthy ones. Res. Plant. Dis. 24: 308-312. (In Korean) https://doi.org/10.5423/RPD.2018.24.4.308
  8. Juvonen, K. R., Purhonen, A.-K., Salmenkallio-Marttila, M., Lähteenmäki, L., Laaksonen, D. E., Herzig, K.-H. et al. 2009. Viscosity of oat bran-enriched beverages influences gastrointestinal hormonal responses in healthy humans. J. Nutr. 139: 461-466. https://doi.org/10.3945/jn.108.099945
  9. Korea Agro-Fisheries and Food Trade Corporation. 2018. Korea Agro-Fisheries & Food Trade Information. Korea Agro-Fisheries & Food Trade Corporation, Naju.
  10. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
  11. Liu, Y. J., Whelen, S. and Hall, B. D. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 16: 1799-1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  12. Maki, K. C., Shinnick, F., Seeley, M. A., Veith, P. E., Quinn, L. C., Hallissey, P. J. et al. 2003. Food products containing free tall oilbased phytosterols and oat ${\beta}$-glucan lower serum total and LDL cholesterol in hypercholesterolemic adults. J. Nutr. 133: 808-813. https://doi.org/10.1093/jn/133.3.808
  13. Nganje, W. E., Bangsund, D. A., Leistritz, F. L., Wilson, W. W. and Tiapo, N. M. 2004. Regional economic impacts of Fusarium head blight in wheat and barley. Rev. Agric. Econ. 26: 332-347. https://doi.org/10.1111/j.1467-9353.2004.00183.x
  14. O'Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. U. S. A. 95: 2044-2049. https://doi.org/10.1073/pnas.95.5.2044
  15. Parry, D., Jenkinson, P. and McLeod, L. 1995. Fusarium ear blight (scab) in small grain cereals: a review. Plant Pathol. 44: 207-238. https://doi.org/10.1111/j.1365-3059.1995.tb02773.x
  16. Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B. et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
  17. Schoneberg, T., Kibler, K., Wettstein, F. E., Bucheli, T. D., Forrer, H. R., Musa, T. et al. 2019. Influence of temperature, humidity duration and growth stage on the infection and mycotoxin production by Fusarium langsethiae and Fusarium poae in oats. Plant Pathol. 68: 173-184. https://doi.org/10.1111/ppa.12922
  18. Shin, S., Son, J.-H., Park, J.-C., Kim, K.-H., Yoon, Y.-M., Cheong, Y.-K. et al. 2018. Comparative pathogenicity of Fusarium graminearum isolates from wheat kernels in Korea. Plant Pathol. J. 34: 347-355. https://doi.org/10.5423/PPJ.OA.01.2018.0013
  19. van der Lee, T., Zhang, H., van Diepeningen, A. and Waalwijk, C. 2015. Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 32: 453-460. https://doi.org/10.1080/19440049.2014.984244
  20. Ward, T. J., Clear, R. M., Rooney, A. P., O'Donnell, K., Gaba, D., Patrick, S. et al. 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 45: 473-484. https://doi.org/10.1016/j.fgb.2007.10.003
  21. White, T., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, New York, NY, USA.
  22. Xue, A. G., Chen, Y., Seifert, K., Guo, W., Blackwell, B. A., Harris, L. J. et al. 2019. Prevalence of Fusarium species causing head blight of spring wheat, barley and oat in Ontario during 2001-2017. Can. J. Plant Pathol. 41: 392-402. https://doi.org/10.1080/07060661.2019.1582560
  23. Yli-Mattila, T. 2010. Ecology and evolution of toxigenic Fusarium species in cereals in northern Europe and Asia. J. Plant Pathol. 92: 7-18.