Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.08.2014.0078

Characterization of the Maize Stalk Rot Pathogens Fusarium subglutinans and F. temperatum and the Effect of Fungicides on Their Mycelial Growth and Colony Formation  

Shin, Jong-Hwan (Applied Biology Program, Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University)
Han, Joon-Hee (Applied Biology Program, Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University)
Lee, Ju Kyong (Applied Plant Sciences Program, Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University)
Kim, Kyoung Su (Applied Biology Program, Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University)
Publication Information
The Plant Pathology Journal / v.30, no.4, 2014 , pp. 397-406 More about this Journal
Abstract
Maize is a socioeconomically important crop in many countries. Recently, a high incidence of stalk rot disease has been reported in several maize fields in Gangwon province. In this report, we show that maize stalk rot is associated with the fungal pathogens Fusarium subglutinans and F. temperatum. Since no fungicides are available to control these pathogens on maize plants, we selected six fungicides (tebuconazole, difenoconazole, fluquinconazole, azoxystrobin, prochloraz and kresoxim-methyl) and examined their effectiveness against the two pathogens. The in vitro antifungal effects of the six fungicides on mycelial growth and colony formation were investigated. Based on the inhibition of mycelial growth, the most toxic fungicide was tebuconazole with 50% effective concentrations ($EC_{50}$) of < $0.1{\mu}g/ml$ and $EC_{90}$ values of $0.9{\mu}g/ml$ for both pathogens, while the least toxic fungicide was azoxystrobin with $EC_{50}$ values of 0.7 and $0.5{\mu}g/ml$ for F. subglutinans and F. temperatum, respectively, and $EC_{90}$ values of > $3,000{\mu}g/ml$ for both pathogens. Based on the inhibition of colony formation by the two pathogens, kresoxim-methyl was the most toxic fungicide with complete inhibition of colony formation at concentrations of 0.1 and $0.01{\mu}g/ml$ for F. subglutinans and F. temperatum, respectively, whereas azoxystrobin was the least toxic fungicide with complete inhibition of colony formation at concentrations > $3,000{\mu}g/ml$ for both pathogens.
Keywords
corn disease; DMI fungicides; Fusarium stalk rot; maize; QoI fungicides;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Shin, M. U., Lee, S. M., Lee, Y. H., Kang, H. J. and Kim, H. T. 2008. The controlling activity of several fungicides against rice bakanae disease caused by Fusarium fujikuroi in five assay methods. Korean J. Pestic. Sci. 12:168-176.   과학기술학회마을
2 Valela, C. P., Casal, O. A., Padin, M. C. and Martinez V. F. 2013. First report of Fusarium temperatum causing seedling blight and stalk rot on maize in Spain. Plant Dis. 97:1252.
3 Skibbe, D. S., Doehlemann, G., Fernandes, J. and Walbot, V. 2010. Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science 328:89-92.   DOI   ScienceOn
4 Sprague, G. F., Brimhall, B. and Hixon, R. M. 1943. Some effects of the waxygene in corn on properties of the endosperm starch. J. Am. Soc. Agron. 35:817-822.   DOI
5 Tarma, A. J. 2009. Common stalk rot diseases of corn. University of Nebraska-Lincoln Extension;Extension Sheet EC-1898. Available from: http://ianrpubs.unl.edu/live/ec1898/build/ec1898.pdf
6 Wang, Q. and Xu, L. 2012. Beauvericin, a bioactive compound produced by fungi: a short review. Molecules 17:2367-2377.   DOI   ScienceOn
7 Watanabe, M., Yonezawa, W., Lee, K., Kumagai, S., Suqita-Konishi, Y., Goto, K. and Hara-Kudo, Y. 2011. Evaluation of genetic markers for identifying isolates of the species of the genus Fusarium. J. Sci. Food Agr. 91:2500-2504.   DOI   ScienceOn
8 Yin, Y., Liu, X., Li, B. and Ma, Z. 2009. Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology 99:487-497.   DOI   ScienceOn
9 Abril, M., Curry, K. J., Smith, B. J. and Wedge, D. E. 2008. Improved microassays used to test natural product-based and conventional fungicides on plant pathogenic fungi. Plant Dis. 92:106-112.   DOI   ScienceOn
10 Choi, H. W., Kim, J. M., Kim, J. H., Hong, S. K., Kim, W. G. and Chum, S. C. 2009. Identification of Fusarium species associated with corn ear rot. Kor. J. Mycol. 37:121-129.   과학기술학회마을   DOI   ScienceOn
11 Choi, Y. H., Kim, H. T., Kim, J. C., Jang, K. S., Cho, K. Y. and Choi, G. J. 2006. In vitro antifungal activities of 13 fungicides against pepper anthracnose fungi. Kor. J. Pestic. Sci. 10:36-42.   과학기술학회마을
12 Amatulli, M. T., Spadaro, D., Gullino, M. L. and Garibaldi, A. 2010. Molecular identification of Fusarium spp. associated with bakanae disease of rice in Italy and assessment of their pathogenicity. Plant Pathol. 59:839-844.   DOI   ScienceOn
13 Amini, J. and Sidovich, D. F. 2010. The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. J. Plant Prot. Res. 50:172-178.
14 Chi, M. H., Park, S. Y. and Lee, Y. H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111.   과학기술학회마을   DOI   ScienceOn
15 Cotton, T. K. and Munkvold, G. P. 1998. Survival of Fusarium moniliforme, F. proliferatum, and F. subglutinans in maize stalk residue. Phytopathology 88:550-555.   DOI   ScienceOn
16 Desjardins, A. E., Maragos, C. M. and Proctor, R. M. 2006. Maize ear rot and moniliformin contamination by cryptic species of Fusarium subglutinans. J. Agric. Food Chem. 54:7383-7390.   DOI   ScienceOn
17 Fotso, J., Leslie, J. F. and Smith, J. S. 2002. Production of beauvericin, moniliformin, fusaproliferin, and fumonisins B1, B2, and B3 by fifteen ex-type strains of Fusarium species. Appl. Environ. Microbiol. 68:5195-5197.   DOI   ScienceOn
18 Gilbertson, R. L., Brwon W. M., Jr. and Ruppel, E. G. 1985. Prevalence and virulence of Fusarium spp. associated with stalk rot of corn in Colorado. Plant Dis. 69:1065-1068.
19 Ivic, D., Sever, Z. and Kuzmanovska, B. 2011. In vitro sensitivity of Fusarium graminearum, F. avenaceum and F. verticillioides to carbendazim, tebuconazole, flutriafol, metconazole and prochloraz. Pestic. Phytomed. 26:35-42.   DOI
20 Kriek, N. P. J., Marasas, W. F. O., Steyn, P. S., Van Rensburg, S. J. and Steyn, M. 1977. Toxicity of a moniliformin-producing strain of Fusarium moniliforme var. subglutinans isolated from maize. Food Cosmet. Toxicol. 15:579-587.   DOI   ScienceOn
21 Jaspers, M. V. Effect of fungicides, in vitro, on germination and growth of Phaeomoniella chlamydospora. 2001. Phytopathol. Mediterr. 40:S453-458.
22 Kang, J. W. 2013. Gangwon-do waxy corn seed industrialization plan. Res. Inst. Gangwon, Chuncheon, Korea. 15 pp.
23 Lim, S. M. and Hooker, A. L. 1971. Southern corn leaf blight: genetic control of pathogenicity and toxin production in race T and race O of Cochliobolus heterostrophus. Genetics 69:115-117.
24 Logrieco, A., Rizzo, A., Ferracane, R. and Ritieni, A. 2002. Occurrence of beauvericin and enniatins in Wheat affected by Fusarium avenaceum head blight. Appl. Environ. Microbiol. 68:82-85.   DOI   ScienceOn
25 Ma, B. 2006. Azoxystrobin sensitivity and resistance management strategies of Magnaporthe grisea causing gray leaf spot on perennial ryegrass (Lolium perenne) turf. Ph.D. thesis. Pennsylvania State University, University Park, USA.
26 Myung, I. S., Jeong, I. H., Moon, S.Y., Kim, W. G., Lee, S. W., Lee, Y. H., Lee, Y. K., Shim, H. S. and Ra, D. S. 2010. First report of bacterial stalk rot of sweet corn caused by Dickeya zeae in Korea. New Dis. Rep. 22:15.   DOI
27 Nel, B., Steinber, C., Labuschagne, N. and Viljoen, A. 2007. Evaluation of fungicides and sterilants for potential application in the management of Fusarium wilt of banana. Crop Prot. 26:697-705.   DOI   ScienceOn
28 Matheron, M. E. and Porchas, M. 2000. Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-al, and metalaxyl on growth, sporulation, and zoospore cyst germination of three Phytophthora spp. Plant Dis. 84:454-458.   DOI   ScienceOn
29 Menniti, A. M., Pancaldi, D., Maccaferri, M. and Casalini, L. 2003. Effect of fungicides on Fusarium head blight and deoxynivalenol content in durum wheat grain. Eur. J. Plant Pathol. 109:109-115.   DOI   ScienceOn
30 Mesterhazy, A., Lemmens, M. and Reid, L. M. 2012. Breeding for resistance to ear rots caused by Fusarium spp. in maize. Plant Breed. 131:1-19.   DOI   ScienceOn
31 Nelson, O. E. and Rines, H. W. 1962. The enzymatic deficiency in the waxy mutant of maize. Biochem. Biophys. Res. Commun. 9:297-300.   DOI   ScienceOn
32 Papas, A. C., Vellios, E. K., Mylonopoulos, I. S., Chatzidimopoulos, M. and Vlassacoudis, A. 2010. Sensitivity of Septoria pyricolaisolates to carbendazim, DMI and QoI based fungicides and to boscalid, in Greece. Phytopathol. Mediterr. 49:227-238.
33 Park, J. S., Park, J. Y., Park, K. J., Lee, J. K. 2008. Genetic diversity among waxy corn accessions in Korea revealed by microsatellite markers. Korean J. Breed. Sci. 40:250-257.   과학기술학회마을
34 Park, K. J., Lee, J. K., Sa, K. J. and Koh, H. J. 2012. Genetic analysis for yield components and taste-associated traits in $F_{2.3}$ population derived from the cross between waxy and sugary maize inbred line. Kor. J. Breed. Sci. 44:328-337.
35 Pataky, J. K. 1992. Relationships between yield of sweet corn and northern leaf blight caused by Exserohilum turcicum. Phytopathology 82:370-375.   DOI
36 Sa, K. J., Park, J. Y., Park, K. J. and Lee, J. K. 2010. Analysis of genetic diversity and relationships among waxy maize inbred lines in Korea using SSR markers. Genes Genom. 32:375-384.   과학기술학회마을   DOI   ScienceOn
37 Park, K. J., Park, J. Y., Ryu, S. H., Goh, B. D., Seo, J. S., Min, H. K., Jung, T. W., Huh, C. S. and Ryu, I. M. 2007. A new waxy corn hybrid cultivar, "Mibaek 2" with good eating quality and lodging resistance. Kor. J. Breed. Sci. 39:108-109.   과학기술학회마을
38 Pasche, J. S., Wharam, C. M. and Gudmestad, N. C. 2004. Shift in sensitivity of Alternaria solani in response to QoI fungicides. Plant Dis. 88:181-187.   DOI   ScienceOn
39 Scauflaire, J., Gourgue, M., Callebaut, A., Munaut, F. 2011. Fusarium temperatum sp. nov. from maize, an emergent species closely related to Fusarium subglutinans. Mycologia 103:586-597.   DOI   ScienceOn
40 Scauflaire, J., Gourgue, M., Callebaut, A. and Munaut, F. 2012. Fusarium temperatum, a mycotoxin-producing pathogen of maize. Eur. J. Plant Pathol. 133:911-922.   DOI
41 Shaner, G. E. and Scott, D. H. Stalk rots of corn. 1998. Purdue University Cooperative Extension Service; Extension Sheet BP-59. Available from: http://www.ces.purdue.edu/extmedia/BP/BP-59.pm65.pdf
42 Shin, J. H., Han, J. H., Kim, M. J., Kim, J. O. and Kim, K. S. 2014. Identification of Fusarium subglutinans, the casual pathogen of corn stalk rot. J. Agric. Life Sci. 48:43-51.   DOI
43 Marasas, W. F. O., Nelson, P. E., and Toussoun, T. A. 1984. Toxigenic Fusarium species: Identity and mycotoxicology. The Pennsylvania State University Press, University Park, USA.
44 Lee, H. B., Kim, D. U., Kim, J. P., Kim, Y. I., Choi, H. G., Moon, H. G. and Lee, C. Y. 2003. Yield and dry matter of the developed hybrid corns using CNU and SK inbred lines. J. Agri. Sci. Chungnam Nat'l Univ. 30:123-127.
45 Wang, J. H., Zhang, J. B., Li, H. P., Gong, A. D., Xue, S., Agboola, R. S. and Liao, Y. C. 2014. Molecular identification, mycotoxin production and comparative pathogenicity of Fusarium temperatum isolated from maize in China. J. Phytopathol. 162:147-157.   DOI   ScienceOn