DOI QR코드

DOI QR Code

Characterization of the Maize Stalk Rot Pathogens Fusarium subglutinans and F. temperatum and the Effect of Fungicides on Their Mycelial Growth and Colony Formation

  • Shin, Jong-Hwan (Applied Biology Program, Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Han, Joon-Hee (Applied Biology Program, Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Lee, Ju Kyong (Applied Plant Sciences Program, Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Kim, Kyoung Su (Applied Biology Program, Division of Bioresource Sciences, College of Agriculture and Life Sciences, Kangwon National University)
  • Received : 2014.08.19
  • Accepted : 2014.10.01
  • Published : 2014.12.01

Abstract

Maize is a socioeconomically important crop in many countries. Recently, a high incidence of stalk rot disease has been reported in several maize fields in Gangwon province. In this report, we show that maize stalk rot is associated with the fungal pathogens Fusarium subglutinans and F. temperatum. Since no fungicides are available to control these pathogens on maize plants, we selected six fungicides (tebuconazole, difenoconazole, fluquinconazole, azoxystrobin, prochloraz and kresoxim-methyl) and examined their effectiveness against the two pathogens. The in vitro antifungal effects of the six fungicides on mycelial growth and colony formation were investigated. Based on the inhibition of mycelial growth, the most toxic fungicide was tebuconazole with 50% effective concentrations ($EC_{50}$) of < $0.1{\mu}g/ml$ and $EC_{90}$ values of $0.9{\mu}g/ml$ for both pathogens, while the least toxic fungicide was azoxystrobin with $EC_{50}$ values of 0.7 and $0.5{\mu}g/ml$ for F. subglutinans and F. temperatum, respectively, and $EC_{90}$ values of > $3,000{\mu}g/ml$ for both pathogens. Based on the inhibition of colony formation by the two pathogens, kresoxim-methyl was the most toxic fungicide with complete inhibition of colony formation at concentrations of 0.1 and $0.01{\mu}g/ml$ for F. subglutinans and F. temperatum, respectively, whereas azoxystrobin was the least toxic fungicide with complete inhibition of colony formation at concentrations > $3,000{\mu}g/ml$ for both pathogens.

Keywords

References

  1. Abril, M., Curry, K. J., Smith, B. J. and Wedge, D. E. 2008. Improved microassays used to test natural product-based and conventional fungicides on plant pathogenic fungi. Plant Dis. 92:106-112. https://doi.org/10.1094/PDIS-92-1-0106
  2. Amatulli, M. T., Spadaro, D., Gullino, M. L. and Garibaldi, A. 2010. Molecular identification of Fusarium spp. associated with bakanae disease of rice in Italy and assessment of their pathogenicity. Plant Pathol. 59:839-844. https://doi.org/10.1111/j.1365-3059.2010.02319.x
  3. Amini, J. and Sidovich, D. F. 2010. The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. J. Plant Prot. Res. 50:172-178.
  4. Chi, M. H., Park, S. Y. and Lee, Y. H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111. https://doi.org/10.5423/PPJ.2009.25.1.108
  5. Choi, H. W., Kim, J. M., Kim, J. H., Hong, S. K., Kim, W. G. and Chum, S. C. 2009. Identification of Fusarium species associated with corn ear rot. Kor. J. Mycol. 37:121-129. https://doi.org/10.4489/KJM.2009.37.2.121
  6. Choi, Y. H., Kim, H. T., Kim, J. C., Jang, K. S., Cho, K. Y. and Choi, G. J. 2006. In vitro antifungal activities of 13 fungicides against pepper anthracnose fungi. Kor. J. Pestic. Sci. 10:36-42.
  7. Cotton, T. K. and Munkvold, G. P. 1998. Survival of Fusarium moniliforme, F. proliferatum, and F. subglutinans in maize stalk residue. Phytopathology 88:550-555. https://doi.org/10.1094/PHYTO.1998.88.6.550
  8. Desjardins, A. E., Maragos, C. M. and Proctor, R. M. 2006. Maize ear rot and moniliformin contamination by cryptic species of Fusarium subglutinans. J. Agric. Food Chem. 54:7383-7390. https://doi.org/10.1021/jf0612272
  9. Fotso, J., Leslie, J. F. and Smith, J. S. 2002. Production of beauvericin, moniliformin, fusaproliferin, and fumonisins B1, B2, and B3 by fifteen ex-type strains of Fusarium species. Appl. Environ. Microbiol. 68:5195-5197. https://doi.org/10.1128/AEM.68.10.5195-5197.2002
  10. Gilbertson, R. L., Brwon W. M., Jr. and Ruppel, E. G. 1985. Prevalence and virulence of Fusarium spp. associated with stalk rot of corn in Colorado. Plant Dis. 69:1065-1068.
  11. Ivic, D., Sever, Z. and Kuzmanovska, B. 2011. In vitro sensitivity of Fusarium graminearum, F. avenaceum and F. verticillioides to carbendazim, tebuconazole, flutriafol, metconazole and prochloraz. Pestic. Phytomed. 26:35-42. https://doi.org/10.2298/PIF1101035I
  12. Jaspers, M. V. Effect of fungicides, in vitro, on germination and growth of Phaeomoniella chlamydospora. 2001. Phytopathol. Mediterr. 40:S453-458.
  13. Kang, J. W. 2013. Gangwon-do waxy corn seed industrialization plan. Res. Inst. Gangwon, Chuncheon, Korea. 15 pp.
  14. Kriek, N. P. J., Marasas, W. F. O., Steyn, P. S., Van Rensburg, S. J. and Steyn, M. 1977. Toxicity of a moniliformin-producing strain of Fusarium moniliforme var. subglutinans isolated from maize. Food Cosmet. Toxicol. 15:579-587. https://doi.org/10.1016/0015-6264(77)90073-6
  15. Lee, H. B., Kim, D. U., Kim, J. P., Kim, Y. I., Choi, H. G., Moon, H. G. and Lee, C. Y. 2003. Yield and dry matter of the developed hybrid corns using CNU and SK inbred lines. J. Agri. Sci. Chungnam Nat'l Univ. 30:123-127.
  16. Lim, S. M. and Hooker, A. L. 1971. Southern corn leaf blight: genetic control of pathogenicity and toxin production in race T and race O of Cochliobolus heterostrophus. Genetics 69:115-117.
  17. Logrieco, A., Rizzo, A., Ferracane, R. and Ritieni, A. 2002. Occurrence of beauvericin and enniatins in Wheat affected by Fusarium avenaceum head blight. Appl. Environ. Microbiol. 68:82-85. https://doi.org/10.1128/AEM.68.1.82-85.2002
  18. Ma, B. 2006. Azoxystrobin sensitivity and resistance management strategies of Magnaporthe grisea causing gray leaf spot on perennial ryegrass (Lolium perenne) turf. Ph.D. thesis. Pennsylvania State University, University Park, USA.
  19. Marasas, W. F. O., Nelson, P. E., and Toussoun, T. A. 1984. Toxigenic Fusarium species: Identity and mycotoxicology. The Pennsylvania State University Press, University Park, USA.
  20. Matheron, M. E. and Porchas, M. 2000. Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-al, and metalaxyl on growth, sporulation, and zoospore cyst germination of three Phytophthora spp. Plant Dis. 84:454-458. https://doi.org/10.1094/PDIS.2000.84.4.454
  21. Menniti, A. M., Pancaldi, D., Maccaferri, M. and Casalini, L. 2003. Effect of fungicides on Fusarium head blight and deoxynivalenol content in durum wheat grain. Eur. J. Plant Pathol. 109:109-115. https://doi.org/10.1023/A:1022557819214
  22. Mesterhazy, A., Lemmens, M. and Reid, L. M. 2012. Breeding for resistance to ear rots caused by Fusarium spp. in maize. Plant Breed. 131:1-19. https://doi.org/10.1111/j.1439-0523.2011.01936.x
  23. Myung, I. S., Jeong, I. H., Moon, S.Y., Kim, W. G., Lee, S. W., Lee, Y. H., Lee, Y. K., Shim, H. S. and Ra, D. S. 2010. First report of bacterial stalk rot of sweet corn caused by Dickeya zeae in Korea. New Dis. Rep. 22:15. https://doi.org/10.5197/j.2044-0588.2010.022.015
  24. Nel, B., Steinber, C., Labuschagne, N. and Viljoen, A. 2007. Evaluation of fungicides and sterilants for potential application in the management of Fusarium wilt of banana. Crop Prot. 26:697-705. https://doi.org/10.1016/j.cropro.2006.06.008
  25. Nelson, O. E. and Rines, H. W. 1962. The enzymatic deficiency in the waxy mutant of maize. Biochem. Biophys. Res. Commun. 9:297-300. https://doi.org/10.1016/0006-291X(62)90043-8
  26. Papas, A. C., Vellios, E. K., Mylonopoulos, I. S., Chatzidimopoulos, M. and Vlassacoudis, A. 2010. Sensitivity of Septoria pyricolaisolates to carbendazim, DMI and QoI based fungicides and to boscalid, in Greece. Phytopathol. Mediterr. 49:227-238.
  27. Park, J. S., Park, J. Y., Park, K. J., Lee, J. K. 2008. Genetic diversity among waxy corn accessions in Korea revealed by microsatellite markers. Korean J. Breed. Sci. 40:250-257.
  28. Park, K. J., Lee, J. K., Sa, K. J. and Koh, H. J. 2012. Genetic analysis for yield components and taste-associated traits in $F_{2.3}$ population derived from the cross between waxy and sugary maize inbred line. Kor. J. Breed. Sci. 44:328-337.
  29. Park, K. J., Park, J. Y., Ryu, S. H., Goh, B. D., Seo, J. S., Min, H. K., Jung, T. W., Huh, C. S. and Ryu, I. M. 2007. A new waxy corn hybrid cultivar, "Mibaek 2" with good eating quality and lodging resistance. Kor. J. Breed. Sci. 39:108-109.
  30. Pasche, J. S., Wharam, C. M. and Gudmestad, N. C. 2004. Shift in sensitivity of Alternaria solani in response to QoI fungicides. Plant Dis. 88:181-187. https://doi.org/10.1094/PDIS.2004.88.2.181
  31. Pataky, J. K. 1992. Relationships between yield of sweet corn and northern leaf blight caused by Exserohilum turcicum. Phytopathology 82:370-375. https://doi.org/10.1094/Phyto-82-370
  32. Sa, K. J., Park, J. Y., Park, K. J. and Lee, J. K. 2010. Analysis of genetic diversity and relationships among waxy maize inbred lines in Korea using SSR markers. Genes Genom. 32:375-384. https://doi.org/10.1007/s13258-010-0025-6
  33. Scauflaire, J., Gourgue, M., Callebaut, A., Munaut, F. 2011. Fusarium temperatum sp. nov. from maize, an emergent species closely related to Fusarium subglutinans. Mycologia 103:586-597. https://doi.org/10.3852/10-135
  34. Scauflaire, J., Gourgue, M., Callebaut, A. and Munaut, F. 2012. Fusarium temperatum, a mycotoxin-producing pathogen of maize. Eur. J. Plant Pathol. 133:911-922. https://doi.org/10.1007/s10658-012-9958-8
  35. Shaner, G. E. and Scott, D. H. Stalk rots of corn. 1998. Purdue University Cooperative Extension Service; Extension Sheet BP-59. Available from: http://www.ces.purdue.edu/extmedia/BP/BP-59.pm65.pdf
  36. Shin, J. H., Han, J. H., Kim, M. J., Kim, J. O. and Kim, K. S. 2014. Identification of Fusarium subglutinans, the casual pathogen of corn stalk rot. J. Agric. Life Sci. 48:43-51. https://doi.org/10.14397/jals.2014.48.3.43
  37. Shin, M. U., Lee, S. M., Lee, Y. H., Kang, H. J. and Kim, H. T. 2008. The controlling activity of several fungicides against rice bakanae disease caused by Fusarium fujikuroi in five assay methods. Korean J. Pestic. Sci. 12:168-176.
  38. Skibbe, D. S., Doehlemann, G., Fernandes, J. and Walbot, V. 2010. Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science 328:89-92. https://doi.org/10.1126/science.1185775
  39. Sprague, G. F., Brimhall, B. and Hixon, R. M. 1943. Some effects of the waxygene in corn on properties of the endosperm starch. J. Am. Soc. Agron. 35:817-822. https://doi.org/10.2134/agronj1943.00021962003500090008x
  40. Tarma, A. J. 2009. Common stalk rot diseases of corn. University of Nebraska-Lincoln Extension;Extension Sheet EC-1898. Available from: http://ianrpubs.unl.edu/live/ec1898/build/ec1898.pdf
  41. Valela, C. P., Casal, O. A., Padin, M. C. and Martinez V. F. 2013. First report of Fusarium temperatum causing seedling blight and stalk rot on maize in Spain. Plant Dis. 97:1252.
  42. Wang, J. H., Zhang, J. B., Li, H. P., Gong, A. D., Xue, S., Agboola, R. S. and Liao, Y. C. 2014. Molecular identification, mycotoxin production and comparative pathogenicity of Fusarium temperatum isolated from maize in China. J. Phytopathol. 162:147-157. https://doi.org/10.1111/jph.12164
  43. Wang, Q. and Xu, L. 2012. Beauvericin, a bioactive compound produced by fungi: a short review. Molecules 17:2367-2377. https://doi.org/10.3390/molecules17032367
  44. Watanabe, M., Yonezawa, W., Lee, K., Kumagai, S., Suqita-Konishi, Y., Goto, K. and Hara-Kudo, Y. 2011. Evaluation of genetic markers for identifying isolates of the species of the genus Fusarium. J. Sci. Food Agr. 91:2500-2504. https://doi.org/10.1002/jsfa.4507
  45. Yin, Y., Liu, X., Li, B. and Ma, Z. 2009. Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology 99:487-497. https://doi.org/10.1094/PHYTO-99-5-0487

Cited by

  1. Analysis of Fungicide Sensitivity and Genetic Diversity among Colletotrichum Species in Sweet Persimmon vol.31, pp.2, 2015, https://doi.org/10.5423/PPJ.OA.03.2015.0033
  2. Fusarium temperatum isolated from maize in France vol.148, pp.4, 2017, https://doi.org/10.1007/s10658-016-1137-x
  3. Biological Control of Fusarium Stalk Rot of Maize Using Bacillus spp. vol.21, pp.4, 2015, https://doi.org/10.5423/RPD.2015.21.4.280
  4. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed vol.33, pp.3, 2017, https://doi.org/10.1007/s12550-017-0277-y
  5. Combined Effects of Soil Biotic and Abiotic Factors, Influenced by Sewage Sludge Incorporation, on the Incidence of Corn Stalk Rot vol.11, pp.5, 2016, https://doi.org/10.1371/journal.pone.0155536
  6. Aggressiveness and Fumonisins Production of Fusarium Subglutinans and Fusarium Temperatum on Korean Maize Cultivars vol.9, pp.2, 2019, https://doi.org/10.3390/agronomy9020088
  7. Potential of Novel Sequence Type of Burkholderia cenocepacia for Biological Control of Root Rot of Maize (Zea mays L.) Caused by Fusarium temperatum vol.20, pp.5, 2019, https://doi.org/10.3390/ijms20051005