Browse > Article
http://dx.doi.org/10.5423/RPD.2019.25.4.157

Identification and Chemotype Profiling of Fusarium Species in Korean Oat  

Choi, Jung-Hye (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Nah, Ju-Young (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Jin, Hyun-Suk (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Lim, Su-Bin (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Paek, Ji-Seon (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Mi-Jeong (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Jang, Ja-Yeong (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Theresa (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Hong, Sung Kee (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Jeomsoon (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Publication Information
Research in Plant Disease / v.25, no.4, 2019 , pp. 157-163 More about this Journal
Abstract
This study aimed to assess the incidence and distribution of toxigenic fungi in Korean oat. Toxigenic fungi were isolated from oat samples collected from 12 oat fields from heading to harvest in 2017 and 2018. A total of 745 fungal colonies were isolated based on morphology and identified using marker genes. About 92% of the fungal isolates were Fusarium spp. and others were Penicillium (5.9%) and Aspergillus (2.1%). Fusarium isolates comprised mostly of F. asiaticum (83.1%), followed by F. incarnatum (5.4%), F. proliferatum (3.5%), F. fujikuroi (2.8%), F. tricinctum species complex (FTSC) 11 (1.5%) and F. graminearum (1.0%). About 97% of F. asiaticum was nivalenol type, and 3-acetyl deoxynivalenol (3.2%) and 15-acetyl deoxynivalenol (0.4%) types also were found. Pathogenicity test of the selected Fusarium isolates revealed that F. asiaticum isolates have a wide range of virulence depending on the tested plants. F. graminearum and FTSC 11 isolates from blighted spikelets were the most virulent in naked oat. All Fusarium isolates (n=18) except one (FTSC 11) produced nivalenol (0.2-7.6 ㎍/g), deoxynivalenol (0.03-6.1 ㎍/g), and zearalenone (0.1-27.0 ㎍/g) on rice medium. This study is first report that F. asiaticum causes Fusarium head blight disease of oat in Korea. These findings demonstrate the dominance of F. asiaticum in oat agroecosystems as in rice, wheat and barley in Korea.
Keywords
Fusarium asiaticum; Fusarium head blight (FHB); Korean oat; Trichothecene; Zearalenone;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Charalampopoulos, D., Wang, R., Pandiella, S. S. and Webb, C. 2002. Application of cereals and cereal components in functional foods: a review. Int. J. Food Microbiol. 79: 131-141.   DOI
2 Chi, M.-H., Park, S.-Y. and Lee, Y.-H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25: 108-111.   DOI
3 Commission of the European Communities. 2006. Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Commission of the European Communities, Brussels, Belgium. 364 pp.
4 Fernandez, M. R. and Chen, Y. 2005. Pathogenicity of Fusarium species on different plant parts of spring wheat under controlled conditions. Plant Dis. 89: 164-169.   DOI
5 Ferrigo, D., Raiola, A. and Causin, R. 2016. Fusarium toxins in cereals: occurrence, legislation, factors promoting the appearance and their management. Molecules 21: E627.   DOI
6 Food and Agriculture Organization of the United Nations. 2017. FAOSTAT Database, Food and agriculture data. Food and Agriculture Organization of the United Nations, Rome, Italy.
7 Jang, J. Y., Kim, S., Jin, H. S., Baek, S. G., O, S., Kim, K. et al. 2018. Occurrence of toxigenic Fusarium spp. and zearalenone in scabby rice grains and healthy ones. Res. Plant. Dis. 24: 308-312. (In Korean)   DOI
8 Juvonen, K. R., Purhonen, A.-K., Salmenkallio-Marttila, M., Lähteenmäki, L., Laaksonen, D. E., Herzig, K.-H. et al. 2009. Viscosity of oat bran-enriched beverages influences gastrointestinal hormonal responses in healthy humans. J. Nutr. 139: 461-466.   DOI
9 Korea Agro-Fisheries and Food Trade Corporation. 2018. Korea Agro-Fisheries & Food Trade Information. Korea Agro-Fisheries & Food Trade Corporation, Naju.
10 Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.   DOI
11 Liu, Y. J., Whelen, S. and Hall, B. D. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 16: 1799-1808.   DOI
12 Maki, K. C., Shinnick, F., Seeley, M. A., Veith, P. E., Quinn, L. C., Hallissey, P. J. et al. 2003. Food products containing free tall oilbased phytosterols and oat ${\beta}$-glucan lower serum total and LDL cholesterol in hypercholesterolemic adults. J. Nutr. 133: 808-813.   DOI
13 Shin, S., Son, J.-H., Park, J.-C., Kim, K.-H., Yoon, Y.-M., Cheong, Y.-K. et al. 2018. Comparative pathogenicity of Fusarium graminearum isolates from wheat kernels in Korea. Plant Pathol. J. 34: 347-355.   DOI
14 Nganje, W. E., Bangsund, D. A., Leistritz, F. L., Wilson, W. W. and Tiapo, N. M. 2004. Regional economic impacts of Fusarium head blight in wheat and barley. Rev. Agric. Econ. 26: 332-347.   DOI
15 O'Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. U. S. A. 95: 2044-2049.   DOI
16 Parry, D., Jenkinson, P. and McLeod, L. 1995. Fusarium ear blight (scab) in small grain cereals: a review. Plant Pathol. 44: 207-238.   DOI
17 Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B. et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541.   DOI
18 Schoneberg, T., Kibler, K., Wettstein, F. E., Bucheli, T. D., Forrer, H. R., Musa, T. et al. 2019. Influence of temperature, humidity duration and growth stage on the infection and mycotoxin production by Fusarium langsethiae and Fusarium poae in oats. Plant Pathol. 68: 173-184.   DOI
19 van der Lee, T., Zhang, H., van Diepeningen, A. and Waalwijk, C. 2015. Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 32: 453-460.   DOI
20 Ward, T. J., Clear, R. M., Rooney, A. P., O'Donnell, K., Gaba, D., Patrick, S. et al. 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 45: 473-484.   DOI
21 Yli-Mattila, T. 2010. Ecology and evolution of toxigenic Fusarium species in cereals in northern Europe and Asia. J. Plant Pathol. 92: 7-18.
22 White, T., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, New York, NY, USA.
23 Xue, A. G., Chen, Y., Seifert, K., Guo, W., Blackwell, B. A., Harris, L. J. et al. 2019. Prevalence of Fusarium species causing head blight of spring wheat, barley and oat in Ontario during 2001-2017. Can. J. Plant Pathol. 41: 392-402.   DOI