• Title/Summary/Keyword: inactivation of E. coli

Search Result 124, Processing Time 0.022 seconds

Inactivation of Escherichia coli and MS2 coliphage by Cu(II)-activated peroxomonosulfate in natural water

  • Kim, Hyung-Eun;Lee, Hye-Jin;Kim, Min Sik;Choi, Joon-Young;Lee, Changha
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.231-237
    • /
    • 2019
  • Peroxymonosulfate (PMS) in combination with Cu(II) was examined to inactivate E. coli and MS2 coliphage in natural water. The combined system (i.e., the Cu(II)/PMS system) caused a synergistic inactivation of E. coli and MS2, in contrast with either Cu(II) or PMS alone. Increasing the concentration of PMS enhanced the inactivation of E. coli and MS2, but after a certain point, it decreased the efficacy of the microbial inactivation. In the Cu(II)/PMS system, adding reactive oxidant scavengers marginally affected the E. coli inactivation, but the inhibitory effects of copper-chelating agents were significant. Fluorescent assays indicated that the Cu(II)/PMS system greatly increased the level of reactive oxidants inside the E. coli cells. The sequential addition of Cu(II) and PMS inactivated more E. coli than did adding the two simultaneously; in particular, the inactivation efficacy was much higher when Cu(II) was added first. The observations from the study collectively showed that the microbial inactivation by the Cu(II)/PMS system could be attributed to the toxicity of Cu(I) as well as the intracellular oxidative stress induced by Cu(III) or radical species.

Effects of Pressure Assisted Mild Thermal Treatment on Inactivation of Escherichia coli ATCC 10536 in Milk Suspension

  • Park, S.H.;Hong, G.P.;Min, S.G.;Choi, M.J.
    • Food Science of Animal Resources
    • /
    • v.29 no.3
    • /
    • pp.310-316
    • /
    • 2009
  • In this study, the influence of pressure assisted mild thermal inactivation (PAMTI) on E. coli ATCC 10536 was examined at 200 MPa and temperature range of $20-50^{\circ}C$. Inactivation rate significantly increased (p<0.05) as temperature and time increased at 200 MPa. The maximum inactivation (7.91 log reduction) was obtained at $50^{\circ}C$ for 30 min under 200 MPa, which meant the complete inactivation of E. coli ATCC 10536. Inactivation kinetics were evaluated with the first order inactivation rate (k), activation energy ($E_a$), thermal death time (TDT), and z value. Kinetic parameters were significantly (p<0.05) influenced by variation temperature of PAMTI. In this study, the synergistic effect of pressure and temperature were found in the inactivation of E. coli ATCC 10536 through PAMTI.

Inactivation influences on Escherichia coli DS5α by irradiation with 405 nm violet-light

  • Young-Sun Kim;Mun-Jin Choi;Dae-Young Lee;Sang-Ook Kang;Geung-Joo Lee
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.417-425
    • /
    • 2023
  • Because an irradiation of 405 nm violet light could have a strong energy, it was used to be sterilized against various microbes in the indoor air condition or fresh food. Escherichia coli is a representative bio-pollutant in the indoor air-borne bacteria, and a hygienic microbe in the horticultural food. This study evaluated the inactivation influences on E. coli DS5α after exposure to 405 nm violet-light (VL) by investigating irradiating time, and the vertical and horizonal distance from light source. The illumination of 405 nm VL was inversely proportional to the distance from the VL source. E. coli DS5α on nutrient agar (NA) was inactivated approximately 50% more than the control when irradiated at 65 cm from 405 nm VL for 3 hours. When compared to the control, E. coli DS5α was inactivated approximately 50% within 70 cm from 405 nm VL for 3 hours. As it was irradiated for 3 hours 70 cm away from 405 nm VL, the horizonal distance from the point was negatively correlated to the inactivation of E. coli DS5α. These results indicated that the inactivation of E. coli DS5α grown on NA medium needs to be irradiated with 405 nm within 70 cm from the light source for 3 hours.

Feasibility Study of UV Disinfection system of Small Wastewater System for Water Reclamation (용수 재이용을 위한 소규모 하수처리시설의 UV disinfection system)

  • Joung, Kwang-Wook;Yoon, Chun-Gyeong;Ham, Jong-Hwa
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.421-424
    • /
    • 2002
  • Deterministic and probabilistic approaches to the design of ultraviolet (UV) disinfection system for water reclamation are reviewed and discussed. The high inactivation of TC, FC and E. coli by UV disinfection was demonstrated and the inactivations of TC, FC and E. coli were 97%, 98% and 99%, respectively. Within the range of 0.3-4.5mWs/cm, the effect of UV does on the inactivation ratio was not observed. However, in the highest wattage of UV lamp, 39W, the inactivation ratio of TC, FC and E. coli was 100%, regardless of the UV does so the UV density was more effective on inactivation ratio of TC, FC and E. coli rather than UV does. Under the 0.4 mWs/cm and 16W of UV lamp, the effect of dissolved organic matter and turbidity on the inactivations of TC, FC and E. coli could not be observed in this study within the range of 0-60mg/L and 0-40 NTU respectively.

  • PDF

Ultraviolet Inactivation of Escherichia coli in Stainless Steel Cups (스테인리스스틸 컵 내 Escherichia coli의 자외선 살균)

  • Mok, Chulkyoon;Lee, Nam-Hoon
    • Food Engineering Progress
    • /
    • v.13 no.2
    • /
    • pp.122-129
    • /
    • 2009
  • Ultraviolet (UV) is widely used as a sterilizing agent in restaurants and catering facilities in Korea. Efficacy of UV sterilizers (UVS) was investigated against E. coli on the inner bottom of stainless steel cups. UV intensity on the bottom of cups varied widely with the locations of cups in UVS, showing higher values at center while lower values at outskirts. The deviations in UV intensity were remarkable on top shelf, but alleviated as proceeded to middle and bottom shelves. Inactivation of E. coli was proportional to the UV intensity and treatment time, consequently to UV dose, and showed a pseudo-first-order kinetics with tailing. Initial inactivation rate constants ($K_{1}$) deviated with the locations of the cups, while final inactivation rate constants ($K_{2}$) showed comparable values. An equation for the calculation of the proposed UV treatment time was suggested.

Disinfection of E. coli from Wastewater using a Non-contact type UV Photoreactor and Log Inactivation Index (비접촉식 자외선 광반응조를 이용한 하수 대장균의 살균과 Log 불활성화율 지표)

  • Kim, Sunghong;Kim, Kyungmyun;Kim, Gwangil;Choe, Jaewan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.139-145
    • /
    • 2016
  • Disinfection of microorganisms using UV light is widely used in the field of water supply and wastewater treatment plant, In spite of high germicidal effect and relatively clean by-product, UV disinfection has fundamental defeat that is accumulation of fouling materials at the interface of water and lamp sleeve. Non-contact type of UV photoreactor which can avoid this fouling generation was developed and the experimental performance evaluation of the system was carried out in this study. Log inactivation rate of E. coli was selected as a disinfection index. The concentration of E. coli of second clarifier effluent was $8.2{\times}10^1-8.2{\times}10^3$ colony per mL and was well inactivated by the non-contact type of UV photoreactor. Under the UV intensity condition of $2.1-2.5mW/cm^2$, E. coli removal rate was observed in the range of 54 - 95% when the HRT was increased from 10 to 52 seconds. Experimental results showed that log inactivation of E. coli was proportional to UV dosage and $200mJ/cm^2$ of UV dose is expected for the 2.0 log inactivation of E. coli from the second clarifier effluent. Between the two parameters of UV intensity and contact time which are consist of UV dose, UV intensity was 4 times more effective than contact time.

Applicability Investigation of E.coli, RNA and DNA Bacteriophages for Possible Indicator Microorganisms Based on the Inactivation Effectiveness by UV (UV 불활성화 효과에 의거한 E.coli, RNA 및 DNA 박테리오파지의 대체 지표 미생물로서의 적용성 검토)

  • Kim, Il-Ho;Wahid, Marfiah AB;Tanaka, Hiroaki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1063-1068
    • /
    • 2010
  • This study compared UV and UV/$H_2O_2$ inactivation of E.coli, a possible indicator microorganism for fecal contamination of water, and $Q{\ss}$ phage, an indicator for pathogenic viruses. UV inactivation of $Q{\ss}$, T4 and lambda phages in actual secondary effluent was investigated, too. As a result, similar inactivation efficiency between $Q{\ss}$ phage and E.coli was observed during UV treatment, while $Q{\ss}$ phage showed higher resistance to UV/$H_2O_2$ than E.coli. $Q{\ss}$ phage resistance to UV or UV/$H_2O_2$ does not reflect those of all pathogenic viruses. However, the result tells that the use of E.coli inactivation efficiency in evaluating microbiological safety of water could not always ensure the sufficient safety from pathogenic viruses. Meanwhile, $Q{\ss}$ phage showed less resistance to UV than T4 and lambda phages, indicating that the use of $Q{\ss}$ phage as an indicator virus may bring insufficient disinfection effectiveness by causing the introduction of lower UV dose than required. Consequently, it can be thought that T4 or lambda phages would be more desirable indicators in ensuring the sufficient disinfection effectiveness for various pathogenic viruses.

Low-Pressure Plasma Inactivation of Escherichia coli (감압 플라즈마를 이용한 Escherichia coli 살균)

  • Mok, Chulkyoon;Song, Dong-Myung
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.202-207
    • /
    • 2010
  • Low-pressure plasmas (LPPs) were generated with different gases such as air, oxygen and nitrogen, and their inactivation effects against Escherichia coli were compared in order to evaluate the potential as a non-thermal microbial disinfection technology. Homogeneous plasmas were generated under low pressure below 1 Torr at gas flow rate of 350 mL/min regardless the types of gases. Temperature increases by LPPs were not detrimental showing less than ${10^{\circ}C}$ and ${25^{\circ}C}$ increases after 5 and 10 min treatments, respectively. The smallest temperature increase was observed with air LPP, and followed by oxygen and nitrogen LPPs. More than 5 log reduction in E. coli was achieved by 5 min LPP treatment but the destruction effect was retarded afterward. The LPP inactivation was represented by a iphasic first order reaction kinetics. The highest inactivation rate constant was achieved in air LPP and followed by oxygen and nitrogen LPPs. The small D-values of the LPP also supported its potentialities as a non-thermal food surface disinfection technology in addition to the substantial microbial reduction of more than 5 logs.

Thermal Inactivation of Salmonella enteritidis, Salmonella typhimurium and E. coli O111 in Liquid Cultures During Microwave Radiation (Microwave 조사에 의한 Salmonella enteritidis, Salmonella typhimurium 과 E. coli의 불활성에 관한 연구)

  • 이조윤;이강욱;배형철;김종우
    • Food Science of Animal Resources
    • /
    • v.18 no.3
    • /
    • pp.269-275
    • /
    • 1998
  • The purpose of this study was to determine the thermal inactivation of Salmonella enteritidis, Salmonella typhimurium and E. coli O111 in liquid cultures treated with microwave energy. Furthermore, this study was to introduce new methodologies for studying nonthermal microwave effects on microorganisms, using controlled microwave energy and specially designed apparatuses. For the automatic temperature control during microwave heating, the real time data acquisition and computation system is designed with BASIC routine. The automatic temperature control system used in the experiments perform relatively stable control at the experiment temperature of 45, 50, 55 60$^{\circ}C$ and 65$^{\circ}C$ for 30 minutes. The effects of microwave heating on liquid cultures was compared with that of conventional heating, still reduces effectively the number of pathogenic bacteria in liquid cultures. While no particular differences between microwave heating and conventional heating was observed in the activation of E. coli at 45$^{\circ}C$ test, the activation of Sal. enteritidis and Sal. typhimurium was slightly reduced during the microwave treatments.

  • PDF

SURFICIAL DISINFECTION OF ESCHERIACHIA COLI-CONTAMINATED PLAYGROUND SOIL BY UV IRRADIATION

  • Kim, Jae-Eun;Kim, Tong-Soo;Cho, Shin-Hyeong;Cho, Min;Yoon, Je-Yong;Shea, Patrick J.;Oh, Byung-Taek
    • Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.64-71
    • /
    • 2007
  • The necessity of disinfecting playground soil is an important issue, because pathogenic protozoa, bacteria, and parasite eggs remain viable for several months and can infect children. UV irradiation has been used to decontaminate water but its effectiveness on soil is unclear. We determined the efficacy of UV radiation for inactivation of an indicator bacteria, E. coli (strain ATCC 8739), on playground soil. While 99% inactivation of E. coli in the soil was readily achieved by UV radiation within 55 min at $0.4\;mW\;cm^{-2}$, complete inactivation was not achieved, even after prolonged treatment at $4\;mW\;cm^{-2}$. This was attributed to the irregular surface of the soil. A small number of E. coli escaped the UV radiation because they were situated in indentations or under small particles on the soil surface. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) confirmed that the surface characteristics of the soil is the major limiting factor in the inactivation of E. coli by UV radiation. Thus UV treatment may not be adequate for disinfecting some soils and should be carefully evaluated before being used on playground soils.