Browse > Article
http://dx.doi.org/10.12989/mwt.2019.10.3.231

Inactivation of Escherichia coli and MS2 coliphage by Cu(II)-activated peroxomonosulfate in natural water  

Kim, Hyung-Eun (Center for Water Resource Cycle Research, KIST School, Korea Institute of Science and Technology (KIST))
Lee, Hye-Jin (Department of Chemical Engineering, McMaster University)
Kim, Min Sik (School of Chemical and Biological Engineering, Institute of Engineering Research, Seoul National University)
Choi, Joon-Young (Hyorim Industries Inc.)
Lee, Changha (School of Chemical and Biological Engineering, Institute of Engineering Research, Seoul National University)
Publication Information
Membrane and Water Treatment / v.10, no.3, 2019 , pp. 231-237 More about this Journal
Abstract
Peroxymonosulfate (PMS) in combination with Cu(II) was examined to inactivate E. coli and MS2 coliphage in natural water. The combined system (i.e., the Cu(II)/PMS system) caused a synergistic inactivation of E. coli and MS2, in contrast with either Cu(II) or PMS alone. Increasing the concentration of PMS enhanced the inactivation of E. coli and MS2, but after a certain point, it decreased the efficacy of the microbial inactivation. In the Cu(II)/PMS system, adding reactive oxidant scavengers marginally affected the E. coli inactivation, but the inhibitory effects of copper-chelating agents were significant. Fluorescent assays indicated that the Cu(II)/PMS system greatly increased the level of reactive oxidants inside the E. coli cells. The sequential addition of Cu(II) and PMS inactivated more E. coli than did adding the two simultaneously; in particular, the inactivation efficacy was much higher when Cu(II) was added first. The observations from the study collectively showed that the microbial inactivation by the Cu(II)/PMS system could be attributed to the toxicity of Cu(I) as well as the intracellular oxidative stress induced by Cu(III) or radical species.
Keywords
microbial inactivation; E. coli; MS2 coliphage; copper; peroxymonosulfate;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ahmadi, M., Ghanbari, F., Alvarez, A. and Martinez, S.S. (2017), "UV-LEDs assisted peroxymonosulfate/$Fe^{2+}$ for oxidative removal of carmoisine: The effect of chloride ion", Korean J. Chem. Eng., 34(8), 2154-2161. https://doi.org/10.1007/s11814-017-0122-1.   DOI
2 Anipsitakis, G.P. and Dionysiou, D.D. (2003), "Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt", Environ. Sci. Technol., 37(20), 4790-4797.   DOI
3 Anipsitakis, G.P. and Dionysiou, D.D. (2004), "Radical generation by the interaction of transition metals with common oxidants", Environ. Sci. Technol., 38(13), 3705-3712. http://doi.org/10.1021/es035121o.   DOI
4 Anipsitakis, G.P., Tufano, T.P. and Dionysiou, D.D. (2008), "Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate", Water Res., 42(12), 2899-2910. https://doi.org/10.1016/j.watres.2008.03.002.   DOI
5 Baziar, M., Nabizadeh, R., Mahvi, A.H., Alimohammadi, M., Naddafi, K., Mesdaghinia, A. and Aslani, H. (2018), "Effect of dissolved oxygen/nZVI/persulfate process on the elimination of 4-chlorophenol from aqueous solution: Modeling and optimization study", Korean J. Chem. Eng., 35(5), 1128-1136. https://doi.org/10.1007/s11814-018-0017-9.   DOI
6 Cho, M., Lee, Y., Choi, W., Chung, H.M. and Yoon, J. (2006), "Study on Fe(VI) species as a disinfectant: Quantitative evaluation and modeling for inactivating Escherichia coli", Water Res., 40(19), 3580-3586. https://doi.org/10.1016/j.watres.2006.05.043.   DOI
7 Eaton, A.D., Clesceri, L.S., Rice, E.W. and Greenberg, A.E. (2005), Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington DC, USA.
8 Cho, M., Kim, J., Kim, J.Y., Yoon, J. and Kim, J.H. (2010), "Mechanisms of Escherichia coli inactivation by several disinfectants", Water Res., 44(11), 3410-3418. https://doi.org/10.1016/j.watres.2010.03.017.   DOI
9 Delcomyn, C.A., Bushway, K.E. and Henley, M.V. (2006), "Inactivation of biological agents using neutral oxone-chloride solutions", Environ. Sci. Technol., 40(8), 2759-2764. http://doi.org/10.1021/es052146.   DOI
10 Ding, Y., Zhu, L., Wang, N. and Tang, H. (2013), "Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic $CuFe_{2}O_{4}$ as a heterogeneous catalyst of peroxymonosulfate", Appl. Catal. B-Environ., 129, 153-162. https://doi.org/10.1016/j.apcatb.2012.09.015.   DOI
11 Gilbert, B.C. and Stell, J.K. (1990), "Mechanisms of peroxide decomposition. An ESR study of the reactions of the peroxomonosulphate anion ($HOOSO_3{^-}$) with Ti, Fe, and $\alpha$-oxygen-substituted radicals", J. Chem. Soc., Perkin Trans., 2(8), 1281-1288. http://doi.org/10.1039/P29900001281.   DOI
12 Ji, F., Li, C. and Deng, L. (2011), "Performance of CuO/Oxone system: Heterogeneous catalytic oxidation of phenol at ambient conditions", Chem. Eng. J., 178, 239-243. https://doi.org/10.1016/j.cej.2011.10.059.   DOI
13 Gomes, A., Fernandes, E. and Lima, J.L.F.C. (2005), "Fluorescence probes used for detection of reactive oxygen species", J. Biochem. Bioph. Meth., 65(2-3), 45-80. https://doi.org/10.1016/j.jbbm.2005.10.003.   DOI
14 Hoff, J.C. and Geldreich, E.E. (1981), "Comparison of the biocidal efficiency of alternative disinfectants", J. Am. Water Works Ass., 73(1), 40-44. https://doi.org/10.1002/j.1551-8833.1981.tb04636.x.   DOI
15 Huh, J.H. and Ahn, J.W. (2017), "A perspective of chemical treatment for cyanobacteria control toward sustainable freshwater development", Environ. Eng. Res., 22(1), 1-11. https://doi.org/10.4491/eer.2016.155.   DOI
16 Ike, I.A., Linden, K.G., Orbell, J.D. and Duke, M. (2018), "Critical review of the science and sustainability of persulphate advanced oxidation processes", Chem. Eng. J., 338, 651-669. https://doi.org/10.1016/j.cej.2018.01.034.   DOI
17 Jang, J., Jang, M., Mui, W., Delcomyn, C.A., Henley, M.V. and Hearn, J.D. (2010), "Formation of active chlorine oxidants in saline-oxone aerosol", Aerosol Sci. Technol., 44(11), 1018-1026. https://doi.org/10.1080/02786826.2010.507612.   DOI
18 Kim, H.E., Nguyen, T.T.M., Lee, H. and Lee, C. (2015), "Enhanced inactivation of Escherichia coli and MS2 coliphage by cupric ion in the presence of hydroxylamine: Dual microbicidal effects", Environ. Sci. Technol., 49(24), 14416-14423. http://doi.org/10.1021/acs.est.5b04310.   DOI
19 Lee, C., Kim, H.H. and Park, N.B. (2018), "Chemistry of persulfates for the oxidation of organic contaminants in water", Membr. Water Treat., 9(6), 405-419. https://doi.org/10.12989/mwt.2018.9.6.405.   DOI
20 Kumar, P.S., Raj, R.M., Rani, S.K. and Easwaramoorthy, D. (2012), "Reaction kinetics and mechanism of copper(II) catalyzed oxidative deamination and decarboxylation of ornithine by peroxomonosulfate", Ind. Eng. Chem. Res., 51(18), 6310-6319. http://doi.org/10.1021/ie202409p.   DOI
21 Lee, H.J., Kim, H.E. and Lee, C. (2017), "Combination of cupric ion with hydroxylamine and hydrogen peroxide for the control of bacterial biofilms on RO membranes", Water Res., 110, 83-90. https://doi.org/10.1016/j.watres.2016.12.014.   DOI
22 Lente, G., Kalmar, J., Baranyai, Z., Kun, A., Kek, I., Bajusz, D., Takacs, M., Veres, L. and Fabian, I. (2009), "One- versus twoelectron oxidation with peroxomonosulfate ion: Reactions with iron(II), vanadium(IV), halide ions, and photoreaction with cerium(III)", Inorg. Chem., 48(4), 1763-1773. http://doi.org/10.1021/ic801569k.   DOI
23 von Gunten, U., (2003), "Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine", Water Res., 37(7), 1469-1487. https://doi.org/10.1016/S0043-1354(02)00458-X.   DOI
24 Nguyen, T.T.M., Park, H.J., Kim, J.Y., Kim, H.E., Lee, H., Yoon, J. and Lee, C. (2013), "Microbial inactivation by cupric ion in combination with H2O2: Role of reactive oxidants", Environ. Sci. Technol., 47(23), 13661-13667. http://doi.org/10.1021/es403155a.   DOI
25 Park, H.J., Nguyen, T.T.M., Yoon, J. and Lee, C. (2012), "Role of reactive oxygen species in Escherichia coli inactivation by cupric ion", Environ. Sci. Technol., 46(20), 11299-11304. http://doi.org/10.1021/es302379q.   DOI
26 Rastogi, A., Al-Abed, S.R. and Dionysiou, D.D. (2009), "Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems", Appl. Catal. B-Environ., 85(3-4), 171-179. https://doi.org/10.1016/j.apcatb.2008.07.010.   DOI
27 Smith, R.C. and Reed, V.D. (1992), "Inhibition by thiols of copper(II)-induced oxidation of oxyhemoglobin", Chem. Biol. Interact., 82(2), 209-217. https://doi.org/10.1016/0009-2797(92)90111-W.   DOI
28 von Gunten, U. (2003), "Ozonation of drinking water: Part I. Oxidation kinetics and product formation", Water Res., 37(7), 1443-1467. https://doi.org/10.1016/S0043-1354(02)00457-8.   DOI
29 Wallace, W.H., Bushway, K.E., Miller, S.D., Delcomyn, C.A., Renard, J.J. and Henley, M.V. (2005), "Use of in situ-generated dimethyldioxirane for inactivation of biological agents", Environ. Sci. Technol., 39(16), 6288-6292. http://doi.org/10.1021/es0501969.   DOI
30 Wood, P., Jones, M., Bhakoo, M. and Gilbert, P. (1996), "A novel strategy for control of microbial biofilms through generation of biocide at the biofilm-surface interface", Appl. Environ. Microbiol. 62(7), 2598-2602.   DOI
31 Zhang, Z. and Edwards, J.O. (1992), "Chain lengths in the decomposition of peroxomonosulfate catalyzed by cobalt and vanadium. Rate law for catalysis by vanadium", Inorg. Chem., 31(17), 3514-3517. https://doi.org/10.1021/ic00043a007.   DOI
32 Wong, M.K., Chan, T.C., Chan, W.Y. Chan, W.K., Vrijmoed, L.L.P., O'Toole, D.K. and Che, C.M. (2006), "Dioxiranes generated in situ from pyruvates and oxone as environmentally friendly oxidizing agents for disinfection", Environ. Sci. Technol., 40(2), 625-630. https://doi.org/10.1021/es050688l.   DOI