Browse > Article
http://dx.doi.org/10.5851/kosfa.2009.29.3.310

Effects of Pressure Assisted Mild Thermal Treatment on Inactivation of Escherichia coli ATCC 10536 in Milk Suspension  

Park, S.H. (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
Hong, G.P. (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
Min, S.G. (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
Choi, M.J. (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
Publication Information
Food Science of Animal Resources / v.29, no.3, 2009 , pp. 310-316 More about this Journal
Abstract
In this study, the influence of pressure assisted mild thermal inactivation (PAMTI) on E. coli ATCC 10536 was examined at 200 MPa and temperature range of $20-50^{\circ}C$. Inactivation rate significantly increased (p<0.05) as temperature and time increased at 200 MPa. The maximum inactivation (7.91 log reduction) was obtained at $50^{\circ}C$ for 30 min under 200 MPa, which meant the complete inactivation of E. coli ATCC 10536. Inactivation kinetics were evaluated with the first order inactivation rate (k), activation energy ($E_a$), thermal death time (TDT), and z value. Kinetic parameters were significantly (p<0.05) influenced by variation temperature of PAMTI. In this study, the synergistic effect of pressure and temperature were found in the inactivation of E. coli ATCC 10536 through PAMTI.
Keywords
high pressure; inactivation; kinetic; Escherichia coli; milk;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Ahn, J., Balasubramaniam, V. M., and Yousef, A .E. (2007). Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing. Int. J. Food Microbiol. 113, 321-329   DOI   ScienceOn
2 Alpas, H., Kalchayanand, N., Bozoglu, F., Sikes, A., Dunne, C. P., and Ray, B. (1999). Variation in resistance to hydrostatic pressure among strains of food-borne pathogens. Appl. Environ. Microbiol. 65, 4248-4251   PUBMED
3 Balasubramanian, S. and Balasubramaniam, V.M. (2003). Compression heating influence of pressure transmitting fluids on bacteria inactivation during high pressure processing. Food Res. Int. 36, 661-668   DOI   ScienceOn
4 Balasubramaniam, V. M., Ting, E. Y., Stewart, C. M., and Robbins, J. A. (2004). Recommended laboratory practices for conducting high-pressure microbial inactivation experiments. Innov. Food Sci. Emerg. Technol. 5, 299-306   DOI   ScienceOn
5 Chen, C. and Tseng, C. W. (1997). Effect of high hydrostatic pressure on the temperature dependence of Saccharomyces cerevisiae and Zygosaccharomyces rouxii. Process Biochem. 32, 337-343   DOI   ScienceOn
6 de Heij, W. B. C., van Schepdael, L. J. M. M., Moezelaar, R., Hoogland, H., Matser, A. M., and van den Berg, R. W. (2003). High-pressure sterilization: maximizing the benefits of adiabatic heating. Food Technol. 57, 37-41
7 Gao, Y. L., Ju, X. R., and Jiang, H. H. (2006a). Studies on inactivation of Bacillus subtilis spores by high hydrostatic pressure and heat using design of experiments. J. Food Eng. 77, 672-679   DOI   ScienceOn
8 Hashizume, C., Kimura, K., and Hayashi, R. (1995). Kinetic analysis of yeast inactivation by high pressure treatment at low temperatures. Biosci. Biotechnol. Biochem. 59, 1455- 1458   DOI   ScienceOn
9 Ludikhuyze, L., Van Loey, A., Indrawati, Denys, S., and Hendrickx, M. (2002). Effects of high pressure on enzymes related to food quality. In: Ultra High Pressure Treatments (edited by M. Hendrickx and D. Knorr). Kluwer Academic/Plenum Publishers, USA, New York, pp. 115-160
10 Ludwig, H., Bieler, C., Hallbauer. K., and Scigalla, W. (1992). Inactivation of microorganisms by high hydrostatic pressure. In: High Pressure and Biotechnology (edited by C. Balny, R. Hayashi, K. Heremans, P., and Masson). Colloque INSERM/ John Libbey Eurotex, UK, London, pp. 25-32
11 Sale, A. J. H., Gould, G. W., and Hamilton, W. A. (1970). Inactivation of bacterial spores by hydrostatic pressure. J. Gen. Microbiol. 60, 323-334   DOI   PUBMED
12 Mallidis, C., Galiatsatou, P., Taoukis, P. S., and Tassou, C. (2003). The kinetic evaluation of the use of high hydrostatic pressure to destroy Lactobacillus plantarum and Lactobacillus brevis. Int. J. Food Sci. Technol. 38, 579-585   DOI   ScienceOn
13 Ting, E., Balasubramaniam, V. M., and Raghubeer, E. (2002). Determining thermal effects in high pressure processing. Food Technol. 56, 31-35
14 Kalchayanand, N., Sikes, A., Dunne, C. P., and Ray, B. (1998b). Interaction of hydrostatic pressure, time and temperature of pressurization and pediocin AcH on inactivation of foodborne bacteria. J. Food Prot. 61, 425-431   DOI   PUBMED
15 Patterson, M. F. and Kilpatrick, D. J. (1998). The combined effect of high hydrostatic pressure and mild heat on inactivation of pathogens in milk and poultry. J. Food Prot. 61, 432-436   DOI   PUBMED
16 Patterson, M. F., Quinn, M., Simpson, R., and Gilmore, A. (1995). Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate buffered saline and foods. J. Food Prot. 58, 524-529   DOI
17 San Martin, M. F., Barbosa-Canovas, G. V., and Swanson, B.G. (2002). Food processing by high hydrostatic pressure. Crit. Rev. Food Sci. Nutr. 42, 627-645   DOI   PUBMED   ScienceOn
18 Hugas, M., Garriga, M., and Monfort, J. M. (2002). New mild technologies in meat processing: high pressure as a model technology. Meat Science. 62, 359-371   DOI   ScienceOn
19 Krebbers, B., Matser, A. M., Hoogerwerf, S. W., Moezelaar, R., Tomassen, M. M. M., and van den Berg, R. W. (2003). Combined high-pressure and thermal treatments for processing of tomato puree: evaluation of microbial inactivation and quality parameters. Innov. Food Sci. Emerg. Technol. 4, 377-385   DOI   ScienceOn
20 Hong, G. P., Park, S. H., Kim, J. Y., Lee, S. K., and Min, S. G. (2005). Effects of time-dependent high pressure treatment on physico-chemical properties of pork. Food Sci. Biotechnol. 14, 808-812
21 Tang, J. and Sokhansanj, S. (1993). Drying parameter effects on lentil seed viability. Tran. Am. Soc. Agric. Eng. 36, 855- 861   DOI
22 Trujillo, A. J., Capellas, M., Saldo, J., Gervilla, R., and Guamis, B. (2002). Application of high-hydrostatic pressure on milk and dairy products: a review. Innov. Food Sci. Emerg.Technol. 3, 295-307   DOI   ScienceOn
23 Metrick, C., Hoover, D. G., and Farkas, D. F. (1989). Effects of high hydrostatic pressure on heat resistant and heat sensitive strains of Salmonella. J. Food Sci. 54, 1547-1549   DOI
24 Metwalli, A. M., de Jongh, H. H., and van Boekel, M. A. J. S. (1998). Heat inactivation of bovine plasmin. Int. Dairy J. 8, 47-56   DOI   ScienceOn
25 Polydera, A. C., Stoforos, N. G., and Taoukis, P. S. (2004). The effect of storage on the antioxidant activity of reconstituted orange juice which had been pasteurized by high pressure or heat. Int. J. Food Sci. Technol. 39, 783-791   DOI   ScienceOn
26 Erkmen, O. and Dooan, C. (2004a). Kinetic analysis of Escherichia coli inactivation by high hydrostatic pressure in broth and foods. Food Microbiol. 21, 181-185   DOI   ScienceOn
27 Smelt, J. P. P. M. (1998). Recent advances in the microbiology of high pressure processing. Trends Food Sci. Technol. 9, 152-158   DOI   ScienceOn
28 Cheftel, J. C. (1995). Hautes pressions, inactivation microbienne et conservation des aliments. Comptes Rendus de l'Academie d'Agriculture de France. 81, 13-38
29 Huppertz, T., Kelly, A. L., and Fox, P. F. (2002). Effects of high pressure on constituents and properties of milk. Int. Dairy J. 12, 561-572   DOI   ScienceOn
30 Kilimann, K. V., Hartmann, C., Vogel, R. F., and Gänzle, M. G. (2005). Differential inactivation of glucose- and glutamate dependent acid resistance of Escherichia coli TMW 2.497 by high-pressure treatments. Sys. Appl. Microbiol. 28, 663-671   DOI   ScienceOn
31 Weemaes, C., Ooms, V., Indrawati, Ludikhuyze, L., Van den Broeck, I., Van Loey, A., and Hendrickx, M. (1999). Pressure- temperature degradation of green color in broccoli juice. J. Food Sci. 64, 504-508   DOI   ScienceOn
32 Erkmen, O. and Karatas, S. (1997). Effect of high hydrostatic pressure on Staphylococcus aureus in milk. J. Food Eng. 33, 257-262   DOI   ScienceOn
33 O´Reilly, C. E., Kelly, A. L., Murphy, P. M., and Beresford, T. P. (2001). High pressure treatment: applications in cheese manufacture and ripening. Trends Food Sci. Technol. 12, 51-59   DOI   ScienceOn
34 Rajan, S., Pandrangi, S., Balasubramaniam, V. M., and Yousef, A. E. (2006). Inactivation of Bacillus stearothermophilus spores in egg patties by pressure-assisted thermal processing. Lebens. Wiss. Technol. 39, 844-851   DOI   ScienceOn
35 Deliza, R., Rosenthal, A., Abadio, F. B. D., Silva, C. H. O., and Castillo, C. (2005). Application of high pressure technology in the fruit juice processing: benefits perceived by consumers. J. Food Eng., 67, 241-246   DOI   ScienceOn
36 Kalchayanand, N., Sikes, A., Dunne, C. P., and Ray, B. (1998a). Factors influencing death and injury of foodborne pathogens by hydrostatic pressure pasteurization. Food Microbiol. 15, 207-214   DOI   ScienceOn
37 Chen, H. and Hoover, D. G. (2003). Modeling the combined effect of high hydrostatic pressure and mild heat on the inactivation kinetics of Listeria monocytogenes Scott A in whole milk. Innov. Food Sci. Emerg. Technol. 4, 25-34   DOI   ScienceOn
38 Meyer, R. S., Cooper, K .L., Knorr, D., and Lelieveld, H. L. M. (2000). High pressure sterilization of foods. Food Technol. 54, 67-72
39 Styles, M. F., Hoover, D. G., and Farkas, D. F. (1991). Response of Listeria monocytogenes and Vibrio parahaemolyticus to high hydrostatic pressure. J. Food Sci. 56, 1404-1407   DOI
40 Tang, J., Ikediala, J. N., Wang, S., Hansen, J. D., and Cavalieri, R. P. (2000). High-temperature-short-time thermal quarantine methods. Postharvest Biol. Technol. 21, 129-145   DOI   ScienceOn
41 Matser, A. M., Krebbers, B., van den Berg, R. W., and Bartels, P. V. (2004). Advantages of high pressure sterilisation on quality of food products. Trends Food Sci. Technol. 15, 79-85   DOI   ScienceOn
42 Benito, A., Ventoura, G., Casadei, M., Robinson, T., and Mackey, B. (1999). Variation in resistance of natural isolates of Escherichia coli O157 to high hydrostatic pressure, mild heat, and other stresses. Appl. Environ. Microbiol. 65, 1564-1569   PUBMED
43 Erkmen, O. and Dogan, C. (2004b). Effects of ultra high hydrostatic pressure on Listeria monocytogenes and natural flora in broth, milk and fruit juices. Int. J. Food Sci. and Technol. 39, 91-97   DOI   ScienceOn
44 Antonio Torres, J. and Velazquez, G. (2005). Commercial opportunities and research challenges in the high pressure processing of foods. J. Food Eng. 67, 95-112   DOI   ScienceOn
45 Park, S. H., Ryu, H. S., Hong, G. P., and Min, S. G. (2006). Physical properties of frozen pork thawed by high pressure assisted thawing process. Food Sci. Technol. Int. 12, 347-352   DOI   ScienceOn
46 Wang, S., Ikediala J. M., Tang, J., and Hansen, J. D. (2002). Thermal death kinetics and heating rate effects for fifthinstar Cydia pomonella (L.) (Lepidoptera: Tortricidae). J. Stored Prod. Res. 38, 441-453   DOI   ScienceOn
47 Corwin, H. and Shellhammer, T. H. (2002). Combined carbon dioxide and high pressure inactivation of pectin methylesterase, polyphenol oxidase, Lactobacillus plantarum and Escherichia coli. J. Food Sci. 67, 697-701   DOI   ScienceOn
48 Bartlett, D. H. (1992). Microbial life at high pressures. Sci. Prog. 76, 479-496   PUBMED
49 Guan, D., Chen, H., Ting, E. Y., and Hoover, D. G. (2006). Inactivation of Staphylococcus aureus and Escherichia coli O157:H7 under isothermal-endpoint pressure conditions. J. Food Eng. 77, 620-627   DOI   ScienceOn
50 Mackey, B. M., Forestiere, K., and Isaacs, N. (1995). Factors Affecting the resistance of Listeria monocytogenes to high hydrostatic pressure. Food Biotechnol. 9, 1-11   DOI   ScienceOn
51 Van Opstal, I., Vanmuysen, S.C.M., Wuytack, E.Y., Masschalck, B., and Michiels, C.W. (2005). Inactivation of Escherichia coli by high hydrostatic pressure at different temperatures in buffer and carrot juice. Int. J. Food Microbiol. 98, 179-191   DOI   ScienceOn