Low-Pressure Plasma Inactivation of Escherichia coli

감압 플라즈마를 이용한 Escherichia coli 살균

  • Mok, Chulkyoon (Department of Food Science and Biotechnology, College of Engineering, Kyungwon University) ;
  • Song, Dong-Myung (Department of Food Science and Biotechnology, College of Engineering, Kyungwon University)
  • 목철균 (경원대학교 식품생물공학과) ;
  • 송동명 (경원대학교 식품생물공학과)
  • Received : 2010.03.25
  • Accepted : 2010.07.05
  • Published : 2010.08.30

Abstract

Low-pressure plasmas (LPPs) were generated with different gases such as air, oxygen and nitrogen, and their inactivation effects against Escherichia coli were compared in order to evaluate the potential as a non-thermal microbial disinfection technology. Homogeneous plasmas were generated under low pressure below 1 Torr at gas flow rate of 350 mL/min regardless the types of gases. Temperature increases by LPPs were not detrimental showing less than ${10^{\circ}C}$ and ${25^{\circ}C}$ increases after 5 and 10 min treatments, respectively. The smallest temperature increase was observed with air LPP, and followed by oxygen and nitrogen LPPs. More than 5 log reduction in E. coli was achieved by 5 min LPP treatment but the destruction effect was retarded afterward. The LPP inactivation was represented by a iphasic first order reaction kinetics. The highest inactivation rate constant was achieved in air LPP and followed by oxygen and nitrogen LPPs. The small D-values of the LPP also supported its potentialities as a non-thermal food surface disinfection technology in addition to the substantial microbial reduction of more than 5 logs.

저온에서 미생물을 사멸시킬 수 있는 비열살균기술로 감압 플라즈마를 활용하고자 생성기체별 감압 플라즈마 특성을 비교하고 Escherichia coli 살균효과를 조사하였다. 1 Torr이하로 감압시킨 상태에서 공기, 산소, 질소를 350 mL/min으로 공급하며 플라즈마를 발생시킨 결과 아크발생 없이 균일한 플라즈마가 생성되었다. 감압 플라즈마에 의한 온도 상승은 5분 처리 시 ${10^{\circ}C}$ 내외, 10분 처리 시 ${25^{\circ}C}$ 미만이었으며, 기체 종류별로는 공기, 산소, 질소 순으로 상승도가 낮았다. 감압 플라즈마 5분간 처리로 E. coli는 5 log 이상 감소하였으며, 이후 감소율이 둔화되어 10분간 처리 후 6-7 log 정도의 감소를 보였다. 감압 플라즈마에 의한 E. coli 살균패턴은 살균속도가 높은 초기와 낮은 후기로 구분되는 2단계 1차 반응으로 확인되었으며, 초기 살균속도상수($k_{1}$)는 공기, 산소, 질소 순으로 감소하였다. 감압 공기플라즈마 살균의 작은 D값 또한 식품 표면의 오염도를 낮추기 위한 비열살균기술로서의 가능성을 제시하였다.

Keywords

Acknowledgement

Supported by : 율촌재단, 경원대학교

References

  1. Becker N, Schmidt M, Viggiano AA, Dressler R, Williams S. 2005. Air plasma chemistry. In: Becker KH, Kogelschartz U, Schoenback KH, Barker RJ (eds.), Non-equilibrium Air Plasma at Atmospheric Pressure. IOP Publishing Ltd., London, England, pp.124-182.
  2. Chun JK, Kim KH, Mok C, Lee SJ, Kwon YA. 2002. Food Engineering. McGraw-Hill Korea, Seoul, Korea, pp. 114-115.
  3. Deng S, Ruan R, Mok C, Huang G, Lin X, Chen P. 2007. Inactivation of Escherichia coli on almonds using nonthermal plasma. J. Food Sci. 72(2):M62-M65. https://doi.org/10.1111/j.1750-3841.2007.00275.x
  4. Fang FC. 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nature Reviews: Microbiology 2: 820-832. https://doi.org/10.1038/nrmicro1004
  5. Farkas J. 2006. Irradiation for better foods. Trends Food Sci. Tech. 17: 148-152. https://doi.org/10.1016/j.tifs.2005.12.003
  6. Juri ML, Ito H, Watanabe H, Tamura N. 1986. Distribution of microorganisms in spices and their decontamination by gammairradiation. J. Agric. Biol. Chem. 50: 347-355. https://doi.org/10.1271/bbb1961.50.347
  7. KFDA. 2005. Food Codes Vol. II. Korea Food and Drug Administration, Seoul, Korea, p. 97.
  8. Lerouge S, Wertheimer MR, Marchand R, Tabrizian M, Yahia L. 2000. Effect of gas composition on spore mortality and etching during low-pressure plasma sterilization. J. Biomed. Mater. Res. 51: 128-135. https://doi.org/10.1002/(SICI)1097-4636(200007)51:1<128::AID-JBM17>3.0.CO;2-#
  9. Lerouge S, Wertheimer MR, Yahia L. 2001. Plasma sterilization: a review of parameters, mechanisms, and limitations. Plasmas and Polymers 6: 175-188. https://doi.org/10.1023/A:1013196629791
  10. Lucas AD, Merritt K, Hitchins VM, Woods TO, NcMamee SG, Lyle DB, Brwon SA. 2003. Residual ethylene oxide in medical devices and device material. J. Biomed. Mater. Res. 66: 548-552.
  11. Mannick JB. 2006. Immunoregulatory and antimicrobial effects of nitrogen oxides. Proc. Amer. Thoracic Soc. 3: 161-165. https://doi.org/10.1513/pats.200505-048BG
  12. Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia LH. 2001. Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int. J. Pharm. 226: 1-21. https://doi.org/10.1016/S0378-5173(01)00752-9
  13. Moisan M, Barbeau J, Crevier MC, Pelletier J, Philip N, Saoudi B. 2002. Plasma sterilization: methods and mechanisms. Pure Appl. Chem. 74: 349-358. https://doi.org/10.1351/pac200274030349
  14. Mok C, Lee NH. 2009. Ultraviolet inactivation of Escherichia coli in stainless steel cups. Food Eng. Prog. 13: 122-129.
  15. Montie TC, Kelly-Wintenberg K, Roth JR. 2000. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans. Plasma Sci. 28: 41-50. https://doi.org/10.1109/27.842860
  16. Oshima T, Sato M. 2004. Bacterial sterilization and intracellular protein release by a pulsed electric field. Adv. Biochem. Eng. Biotechnol. 90: 113-133.
  17. Ott L.. 1984. An Introduction to Statistical Methods and Data Analysis, 2nd ed. PWS Publishers, Boston, MA, U.S.A. pp. 376-379.
  18. Sadecka J, Kolek E, Salkova Z, Petrikova J, Kovac M. 2004. Effect of gamma-irradiation on microbial decontamination and organoleptic quality of black pepper (Piper nigrum L.). Czech J. Food Sci. 22: 342-345.
  19. Sadecka J, Petka J, Suhaj M. 2005. Influence of two sterilization ways on the volatiles of black pepper (Piper nigrum L.). Chemicke Listy 99: 335-338.
  20. Sadecka J. 2007. Irradiation of spices-a review. Czech J. Food Sci. 25: 231-242.
  21. SAS Institute Inc. 2004. SAS/STAT 9.1 User's Guide. SAS Institute Inc., Cary, NC, U.S.A.
  22. Soloshenko IA, Tsiolko VV, Khomich VA, Shchedrin AI, Ryabtsev AV, Bazhenov VY, Mikhno IL. 2000. Sterilization of medical products in low-pressure glow discharges. Plasma Phys. rep. 26: 792-800. https://doi.org/10.1134/1.1309476