• Title/Summary/Keyword: in-situ doped

Search Result 106, Processing Time 0.027 seconds

Hemispherical Grained Silicon formation Condition on In-Situ Phosphorous Doped Amorphous-Si Using The Seeding Method (Seeding Method를 이용한 인이 도우핑된 Amorphous-Si에서의 HSG형성 조건)

  • 정양희;강성준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1128-1135
    • /
    • 2001
  • In this paper, a new HSG-Si formation technology, "seeding method', which employs Si$_2$H$_{6}$-molecule irradiation and annealing, was applied for realizing 64Mbit DRAMs. By using this technique, grain size controlled HSG-Si can be fabricated on in-situ phosphorous-doped amorphous-Si electrode. The new HSG-Si fabrication technology achieves twice the storage capacitance with high reliability for the stacked capacitors. In this technique, optimum process conditions of the phosphorous concentration, storage polysilicon deposition temperature and thickness of hemispherical grain silicon are in the range of 3.0-4.0E19atoms/㎤, 53$0^{\circ}C$ and 400$\AA$, respectively. In the 64M bit DRAM capacitor using optimum process conditions, limit thickness of dielectric nitride is about 65$\AA$.

  • PDF

Electrical characteristics of In-situ doped polycrystalline 3C-SiC thin films (In-situ 도핑된 다결정 3C-SiC 박막의 전기적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.137-137
    • /
    • 2008
  • In-situ doped polycrystalline 3C-SiC thin films were deposited by APCVD at $1200^{\circ}C$ using HMDS(hexamethyildisilane: $Si_2(CH_3)_6)$) as Si and C precursor, and 0 ~ 100 sccm $N_2$ as the dopant source gas. The peak of SiC is appeared in polycrystalline 3C-SiC thin films grown on $SiO_2$/Si substrates in XRD(X-ray diffraction) and FT-IR(Fourier transform infrared spectroscopy) analyses. The resistivity of polycrystalline 3C-SiC thin films decreased from 8.35 $\Omega{\cdot}cm$ with $N_2$ of 0 sccm to 0.014 $\Omega{\cdot}cm$ with 100 sccm. The carrier concentration of poly 3C-SiC films increased with doping from $3.0819\times10^{17}$ to $2.2994\times10^{19}cm^{-3}$ and their electronic mobilities increased from 2.433 to 29.299 $cm^2/V{\cdot}S$, respectively.

  • PDF

In-situ P-doped LPCVD Poly Si Films as the Electrodes of Pressure Sensor for High Temperature Applications (고온용 압력센서 응용을 위한 in-situ 인(P)-도핑 LPCVD Poly Si 전극)

  • Choi, Kyeong-Keun;Kee, Jong;Lee, Jeong-Yoon;Kang, Moon Sik
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.438-444
    • /
    • 2017
  • In this paper, we focus on optimization of the in-situ phosphorous (P) doping of low-pressure chemical vapor deposited (LPCVD) poly Si resistors for obtaining near-zero temperature coefficient of resistance (TCR) at temperature range from 25 to $600^{\circ}C$. The deposited poly Si films were annealed by rapid thermal anneal (RTA) process at the temperature range from 900 to $1000^{\circ}C$ for 90s in nitrogen ambient to relieve intrinsic stress and decrease the TCR in the poly Si layer and get the Ohmic contact. After the RTA process, a roughness of the thin film was slightly changed but the grain size and crystallinity of the thin film with the increase in anneal temperature. The film annealed at $1,000^{\circ}C$ showed the behavior of Schottky contact and had dislocations in the films. Ohmic contact and TCR of $334.4{\pm}8.2$ (ppm/K) within 4 inch wafer were obtained in the measuring temperature range of 25 to $600^{\circ}C$ for the optimized 200 nm thick-poly Si film with width/length of $20{\mu}m/1,800{\mu}m$. This shows the potential of in-situ P doped LPCVD poly Si as a resistor for pressure sensor in harsh environment applications.

Deposition and in-situ Plasma Doping of Plasma-Polymerized Thiophene Films Using PECVD

  • Kim, Tae-Wook;Lee, Jung-Hyun;Back, Ji-Woong;Jung, Woo-Gwang;Kim, Jin-Yeol
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • Highly transparent, thin polythiophene (PT) films were successfully synthesized by the plasma polymerization of thiophene. These films were doped with $O_2$ plasma by in-situ doping technique. The plasma polymerized PT films were deposited at about 50 to 340 nm/min, depending on the temperature and plasma power. A resultant transparency as high as 85% was achieved. The plasma polymerized PT films exhibited the characteristics of an insulator or semiconductor ($10^{10{\sim}12}{\Omega}/{\Box}$, $10^{-7}S/cm$). The conductivity was immediately increased up to $10{\Omega}/{\Box}$ and $10^{-2}S/cm$, when doped with $O_2$ plasma. The plasma-doped PT films exhibited an increased surface roughness resulting in a decreased contact angle. However, the thickness of the PT layer was partially decomposed and/or etched with increasing voltage above 40 W.

In situ cavity loss measurements of a mode-locked erbium-doped fiber ring laser by thed relaxation oscillation frequency method

  • Jhon, Young-Min;Kim, Bong-Kyu;Kim, Dong-Hwan;Kim, Myong-Wook;Kim, Sang-Kuk;Choi, Sang-Sam
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.11-13
    • /
    • 2000
  • We experimentally measured the cold cavity loss of a mode-locked erbium-doped fiber ring laser in situ by using the relaxation oscillation frequency method. The relaxation oscillation frequency is measured for various pumping powers and the data is fitted by the least squares method with a theoretical curve of parameters including the cavity loss. We obtained a cavity loss of 15.3$\pm$0.5 dB which was found to agree with the results of direct transmission loss measurements.

Thermal and Mechanical Properties of a N2 Doped Porous 3C-SiC Thin Film (질소가 도핑된 다공질 3C-SiC 박막의 열적, 기계적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.651-654
    • /
    • 2010
  • This paper describes the thermal and mechanical properties of doped thin film 3C-SiC and porous 3C-SiC. In this work, the in-situ doped thin film 3C-SiC was deposited by using atmospheric pressure chemical vapor deposition (APCVD) method at $120^{\circ}C$ using single-precursor hexamethyildisilane: $Si_2(CH_3)_6$ (HMDS) as Si and C precursors. 0~40 sccm $N_2$ gas was used as doping source. After growing of doped thin film 3C-SiC, porous structure was achieved by anodization process with 380 nm UV-LED. Anodization time and current density were fixed at 60 sec and 7.1 mA/$cm^2$, respectively. The thermal and mechanical properties of the $N_2$ doped porous 3C-SiC was measured by temperature coefficient of resistance (TCR) and nano-indentation, respectively. In the case of 0 sccm, the variations of TCR of thin film and porous 3C-SiC are similar, but TCR conversely changed with increase of $N_2$ flow rate. Maximum young's modulus and hardness of porous 3C-SiC films were measured to be 276 GPa and 32 Gpa at 0 sccm $N_2$, respectively.

The doping effect and electronic structure of alkali metal doped tris (8-hydroxyquinoline) aluminum

  • Kim, Ki-Soo;Lee, Jong-Lam
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1059-1060
    • /
    • 2009
  • We have investigated the pristine alkali metal doping effect which is the Fermi level of alkali metal doped Alq3 shifts toward the LUMO. In-situ measurements of synchrotron radiation photoelectron spectroscopy revealed that the interface dipole or bend bending in previous reports are not the pristine alkali metal doping effect

  • PDF

Phase change properties of BN doped GeSbTe films

  • Jang, Mun-Hyeong;Park, Seong-Jin;Park, Seung-Jong;Jeong, Gwang-Sik;Jo, Man-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.226-226
    • /
    • 2010
  • Boron Nitride (BN) doped GeSbTe films were grown by the ion beam sputtering deposition (IBSD). The in-situ sheet resistance data and the x-ray diffraction patterns showed the crystallization is suppressed due to the BN incorporation. The phase change speed in BN doped GeSbTe films were investigated using the static tester equipped with nanosecond pulsed laser. The phase change speed for BN doped GST films become faster than the corresponding values for an undoped GST film. The Johnson-Mehl-Avrami(JMA) plot and Avrami coefficient for laser crystallization showed that the change in growth mode during the laser crystallization is a most important factor for the phase change speed in the BN doped GST films. The JMA results and the atomic force microscopy (AFM) images indicate that the origin of the change in the crystalline growth mode is due to an increase in the number of initial nucleation sites which is produced by the incorporated BN. In addition, the retension properties for the laser writing/erasing are remarkably improved in BN doped GeSbTe films owing to the stability of the incorporated BN.

  • PDF