• Title/Summary/Keyword: in-plane and out-of-plane

Search Result 1,847, Processing Time 0.041 seconds

AN INITIAL HISTOLOGIC STUDY ON MOLAR INTRUSION OF CAT WITH THE USAGE OF PERMANENT MAGNET (영구자석을 이용한 고양이 구치부 intrusion에 관한 초기 조직학적 연구)

  • Kim, Seung Chul;Ryu, Young Kyu
    • The korean journal of orthodontics
    • /
    • v.20 no.1
    • /
    • pp.169-179
    • /
    • 1990
  • Utilizing the repelling force of permanent magnet of find out weather it shows the findings of molar intrusion histologically and compares the result with the resin bite plane. As for the experimental animals, 10 cats of completion of permanent dentition with mean weight of 2.2kg which have flat occlusal plane of molar areas were used. I raised the cats under the condition of their being attached with manufactured appliance by direct bonding system and of their wearing vertical chin strap anesthetized for 12-14 hours per day through 5 days. Then, observing the root apex areas with lightmicroscope. The results were as follows; 1. In the group with resin bite plane, osteoblasts and osteoclasts could not find out but could find out periodontal ligment fiber obliquely angulated in the apical and lingual direction. 2. In the group with the permanent magnet, not only the obliquely angulated periodontal ligament fiber but also the osteoclasts at the apical areas were observed.

  • PDF

A Thin Circular Beam Finite Element for Out-of-plane Vibration Analysis of Curved Beams (곡선 보의 면외 진동해석을 위한 얇은 원형 보 유한요소)

  • Kim, Chang-Boo;Kim, Bo-Yeon;Song, Seung-Gwan
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1598-1606
    • /
    • 2007
  • In this paper, we present a thin circular beam finite element for the out-of-plane vibration analysis of curved beams. The element stiffness matrix and the element mass matrix are derived respectively from the strain energy and the kinetic energy by using the natural shape functions which are obtained from an integration of the differential equations of the finite element in static equilibrium. The matrices are formulated with respect to the local polar coordinate system or to the global Cartesian coordinate system in consideration of the effects of shear deformation and rotary inertias. Some example problems are analysed. The FEM results are compared with the theoretical ones to show that the presented finite element can describe quite efficiently and accurately the out-of-plane motion of thin curved beams.

  • PDF

A Study on Out-of-Plane Flexural Behavior of the Structure with a Vertical Plane Connection between a Reinforced Concrete Wall and a Steel Plate Concrete Wall (철근 콘크리트 벽과 강판 콘크리트 벽이 수직으로 만나는 이질접합 구조물의 면외 휨 거동 특성 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Hahm, Kyung Won;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2013
  • This paper describes the experimental study on the structural behavior of the vertical plane connection between a reinforced concrete wall and a steel plate concrete wall under out-of-plane flexural loads. The specimen was tested under a dynamic test with the use of cyclic loads. As a result of the test, ductile failure mode of vertical bars was shown under a push load and the failure load was more than that of the nominal strength of the specimen. However, the shear failure mode of the connection was confirmed in case of a pull test and thus demonstrates a need for a shear reinforcement.

Out-of-Plane Effective Length Factor of X-Bracing System (X-브레이싱의 면외 유효 좌굴길이 계수)

  • Moon, Ji Ho;Yoon, Ki Yong;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.129-137
    • /
    • 2007
  • In this study, the elastic out-of-plane buckling load and the effective length factor of X-bracing systems were studied. Points of the intersection of diagonals were modeled as a rigid connection or a pinned connection depending on the connection method of diagonals. The boundary condition of the intersection influences the buckling load of X-bracing systems. For each boundary condition of the intersection, effective out-of-plane length factors of X-bracing systems were derived as a function of the length ratio of tension and compression diagonals $L_P$/$L_T$, the applied force ratio of tension and compression diagonals T/P, and the Euler buckling load ratio of tension and compression diagonals $P_{ET}$/$P_{EP}$. The proposed effective out-of-plane length factors of X-bracing systems were compared with the results of previous researchers and those of the finite element analysis and their properties were verified. Finally, the effects of the boundary condition of the intersection on the out-of-plane buckling load of X-bracing systems were investigated.

Endoscopic Transaxillary Dual Plane Breast Augmentation (내시경을 이용한 겨드랑절개 이중평면 유방확대술)

  • Sim, Hyung Bo;Wie, Hyung Gon;Hong, Yoon Gi
    • Archives of Plastic Surgery
    • /
    • v.35 no.5
    • /
    • pp.545-552
    • /
    • 2008
  • Purpose: The transaxillary approach for breast augmentation has been advocated for patients and surgeons for several decades. However, this blind technique had many disadvantages including, traumatic dissection, difficult hemostasis, displacement of implants, and ill-defined asymmetrical location of inframammary crease. In the present study, the precise endoscopic electrocautery dissection was applied to eliminate the limits of blunt dissection throughout the procedures. Methods: From December 2006 to December 2007, a total of 103 patients with an average age of 29.5 years underwent endoscopic assisted transaxillary dual plane augmentation mammoplasty. The mean implant size was 243 cc with the range between 150 and 350 cc. Through a 4 cm axillary incision, electrocautery dissection for submuscular pockets was carried out under the endoscopic control. The costal origin of pectoralis muscle was completely divided to expose subcutaneous tissue and to make type I dual plane. Results: Using the endoscopic dissection, we achieved good aesthetic results including a short recovery period, less morbidity, and symmetrical well-defined inframammary crease. Type I dual plane procedure could support the consistent inframammary fold shape and be applied to most patients without breast ptosis. Minor complications did not occur, however, four major complications of capsular contracture occurred. Conclusion: In contrast to the era of the blind techniques, endoscopic assisted transaxillary dual plane breast augmentation can now be performed effectively and reproducibly. With Its advantage, the axillary application of endoscopy for augmentation mammaplasty is useful to achieve the optimal cosmetic outcomes.

RC Wall under Axial Force and Biaxial Bending Moments (축력과 면내 및 면외 휨모멘트를 받는 철근콘크리트 벽체)

  • 박홍근
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.113-124
    • /
    • 1998
  • Numerical study using nonlinear finite element analysis is done for investigating behavior of isolated reinforced concrete walls subject to combined in-plane and out-of-plane bending moments and axial force. A method for estimating the ultimate strength of wall is developed, based on the analytical results. For the nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities is developed. An existing unified method combining plasticity theory and damage model is used for material model of reinforced concrete. By numerical studies, the internal force distribution in the cross section is idealized, and a new method for estimating the ultimate strength of wall is developed. According to the proposed method, variation of the interaction curve of in-plane bending moment and axial force depends on the range of the permissible axial force per unit length that is determined by the given amount of out-of-plane bending moment. As the out-of-plane bending moment increases, the interaction curve shrinks, which indicates a decrease in the ultimate strength. The proposed method is compared with an existing method using the general assumption that strain shall be directly proportional to the distance from the neutral axis. Compared with the proposed method, the existing method overestimates the ultimate strength for walls subject to low out-of-plane bending moments, and it underestimates the ultimate strength for walls subject to high out-of-plane bending moments.

Effect of Initial Defects on Welding Deformation and Residual Stress (강판의 초기不整이 용접변형.잔류응력에 미치는 영향)

  • 박정응
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.76-84
    • /
    • 1999
  • The residual stress generated when the steel plates were produced, did not influence on the out-of-plane deformation and residual stress generated by welding. When the initial deflection shape was a concave(Type I), the out-of-plane deformation became the same shape as that of the initial deflection and its magnitude became small. When the initial deflection made a winding in the welding direction(Type III), the out-of-plane deformation became large in the plate width. The initial deflection shape did not influence on residual stress and plastic strain produced by welding.

  • PDF

Chaotic Out-of-Plane Vibration of Curved Pipe Conveying Oscillatory Flow (조화진동유동을 포함한 곡선파이프계의 외평면 혼돈 운동 연구)

  • 홍성철
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.849-858
    • /
    • 2000
  • In this paper the chaotic out-of-plane vibrations of the uniformly curved pipe with pulsating flow are theoretically investigated. The derived equations of motion contain the effects of nonlinear curvature and torsional coupling. The corresponding nonlinear ordinary differential equation is a type of nonhomogenous Hill's equation . this is transformed into the averaged equation by averaging theorem. Bifurcation curves of chaotic motion are obtained by Melnikov's method and plotted in several cases of frequency ratios. The theoretically obtained results are demonstrated by numerical simulation. And strange attractors are shown.

  • PDF

Out-of-plane elastic buckling of truss beams

  • Fedoroff, Alexis;Kouhia, Reijo
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.613-629
    • /
    • 2013
  • In this article we will present a method to directly evaluate the critical point of a non-linear system by using the solution of a polynomial eigenvalue approximation as a starting point for an iterative non-linear system solver. This method will be used to evaluate out-of-plane buckling properties of truss structures for which the lateral displacement of the upper chord has been prevented. The aim is to assess for a number of example structures whether or not the linearized eigenvalue solution gives a relevant starting point for an iterative non-linear system solver in order to find the minimum positive critical load.

A Piezo-driven Fine Manipulation System Based on Flexure Hinges for Manipulating Micro Parts (미세 부품 조작을 위한 탄성힌지 기반 압전소자 구동형 초정밀 머니플레이션 시스템)

  • Choi, Kee-Bong;Lee, Jae-Jong;Kim, Gee-Hong;Ko, Kuk-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.881-886
    • /
    • 2009
  • This paper presents a manipulation system consisting of a coarse/fine XY positioning system and an out-of-plane manipulator. The object of the system is to conduct tine positioning and manipulation of micro parts. The fine stage and the out-of-plane manipulator have compliant mechanisms with flexure hinges, which are driven by stack-type piezoelectric elements. In the fine stage, the compliant mechanism plays the roles of motion guide and displacement amplification. The out-of-plane manipulator contains three piezo-driven compliant mechanisms for large working range and fine resolution. For large displacement, the compliant mechanism is implemented by a two-step displacement amplification mechanism. The compliant mechanisms are manufactured by wire electro-discharge machining for flexure hinges. Experiments demonstrate that the developed system is applicable to a fine positioning and fine manipulation of micro parts.