• Title/Summary/Keyword: in situ spectroscopy

Search Result 271, Processing Time 0.022 seconds

Effect of Various Supports on the Physico-chemical Properties of V-Sb Oxides in the Oxidative Dehydrogenation of Isobutane

  • Shamilov, N.T.;Vislovskiy, V.P.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.812-818
    • /
    • 2011
  • [ $V_{0.9}Sb_{0.1}O_x$ ]systems, bulk and deposited on different supports (five types of ${\gamma}$-aluminas, ${\alpha}$-alumina, silica-alumina, silica gel, magnesium oxide), have been tested in the oxidative dehydrogenation (ODH) of iso-butane. This statement is derived from the data obtained by a set of characterisation techniques(specific surface area measurements, X-ray diffraction, X-ray photoelectron spectroscopy, laser Raman spectroscopy, in situ differential scanning calorimetry and in situ diffuse reflectance-absorption infrared Fourier transform spectroscopy).

Comparison of Near-Infrared Spectroscopy with Raman Spectroscopy from the Point of Nondestructive Analysis of Biological Materials

  • Takeyuki Tanaka;Hidetoshi Sato;Jung, Young-Mee;Yukihiro Ozaki
    • Near Infrared Analysis
    • /
    • v.1 no.2
    • /
    • pp.9-20
    • /
    • 2000
  • Recently, near-infrared (NIR) spectroscopy and Raman spectroscopy have received keen interest as powerful techniques for nondestructive analysis of biological materials. The purpose of this review paper is to compare the advantages of NIR and Raman spectroscopy in the nondestructive analysis. Both methods are quite unique and often complementary. For example. NIR spectroscopy is very useful in monitoring in situ the content of components inside biological materials while Raman spectroscopy is very suitable for identifying micro-components on the surface of biological materials. In this article specific characters of the two spectroscopic methods are discussed first and then several examples of applications of NIR and Raman spectroscopy to the biological nondestructive analysis are introduced.

Technical tendency of electric field measurements in glow discharge plasmas using laser spectroscopy (레이저를 이용한 방전 플라즈마중의 전계측정 기술 동향)

  • Choi, Y.W.;Bowden, M.;Muraoka, K.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1663-1665
    • /
    • 1997
  • Direct measurements of electric fields in a glow discharge are difficult because the measurement method should be sensitive to the electric field and non-intrusive. Laser spectroscopy is very suitable in that it is non-intrusive and allow in-situ measurements to be made. In this report, the measurement techniques of electric fields in glow discharge using laser spectroscopy were described.

  • PDF

In situ Gel Forming Stereocomplex Composed of Four-Arm PEG-PDLA and PEG-PLLA Block Copolymers

  • Jun, Yeo-Jin;Park, Kyung-Min;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Seung-Jin
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.704-710
    • /
    • 2008
  • Injectable hydrogels are quite promising materials due to their potential to minimize invasive implantation and this provides versatile fitness irrespective of the damaged regions and facilitates the incorporation of bioactive agents or cells. In situ gel formation through stereocomplex formation is a promising candidate for injectable hydrogels. In this paper, a new series of enantiomeric, four-arm, PEG-PLA block copolymers and their stereocomplexed hydrogels were prepared by bulk ring-opening polymerization of D-lactide and L-lactide, respectively, with stannous octoate as a catalyst. The prepared polymers were characterized by $^1H$ nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT IR) spectroscopy, gel permeation chromatography (GPC) and thermal gravitational analysis (TGA), confirming the tailored structure and chain lengths. The swelling and degradation behavior of the hydrogels formed from a selected copolymer series were observed in different concentrations. The degradation rate decreased with increasing polymer content in the solution. The rheological behavior indicated that the prepared hydrogel underwent in situ gelation and had favorable mechanical strength. In addition, its feasibility as an injectable scaffold was evaluated using a media dependence test for cell culture. A Tris solution was more favorable for in situ gel formation than PBS and DMEM solutions were. These results demonstrated the in situ formation of hydrogel through the construction of a stereocomplex with enantiomeric, 4-arm, PEG-PLA copolymers. Overall, enantiomeric, 4-arm, PEG-PLA copolymers are a new species of stereocomplexed hydrogels that are suitable for further research into injectable hydrogels.

In-situ Monitoring of PAHs in the Environment Using Laser-Induced Fluorescence Spectroscopy (Laser-Induced Fluorescence spectroscopy을 이용한 환경 중 PAHs 화합물의 실시간 현지 모니터링)

  • ;F. Lewitzka
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.358-359
    • /
    • 2001
  • PAHs는 불완전연소 과정과 주유소나 타르 생산공장 주변에서 발생하는데 돌연변이와 발암의 잠재력으로 인하여 특별한 관심이 요구되는 것들이고 US-EPA에서도 우선 오염물질로 선정되었다. PAHs를 검출하는 훌륭한 기술들이 존재하나, 이러한 기술들은 연속적인 모니터링이 요구되거나 많은 수의 샘플을 분석해야할 경우에 상당한 양의 비용과 시간이 요구된다. 그러나 분광학 기술을 바탕으로 한 Laser-Induced Fluorescence(LIF) spectroscopy를 이용한 방법은 실시간으로 연속적인 측정을 가능하게 할 뿐 아니라 여러 가지 PAHs, 유류오염물질 등의 물질을 동시에 측정할 수 있다. (중략)

  • PDF

Application of Handheld Raman Spectroscopy for Pigment Identification of a Hanging Painting at Janggoksa Temple(Maitreya Buddha) (장곡사 미륵불 괘불탱의 채색 재료 분석을 위한 휴대용 라만 분광기의 적용성 연구)

  • LEE Na Ra;YOO Youngmi;KIM Sojin
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.216-228
    • /
    • 2023
  • The purpose of this study is to apply the handheld Raman spectrometer to identify the coloring materials used in a large Buddhist painting (of Maitreya Buddha) at Janggoksa Temple through cross-validation with HH-XRF. An in situ investigation was performed together with use of a digital microscope and HH-XRF analysis to verify the properties of pigments used in the gwaebul ("large Buddhist painting") via a non-destructive method. However, the identification of coloring materials composed of light elements and mixed or overlaid pigments is difficult using only non-destructive analysis data. Unlike in situ investigation, laboratory analysis often required samples yet the sampling is restricted to a small quantity due to the cultural heritage characteristic. Thus, it is necessary to develop a non-destructive in situ method to supplement the HH-XRF data. The large Buddhist painting at Janggoksa Temple was painted mainly using white, red, yellow, green, and blue colors. The Raman spectroscopy provides molecular information, while XRF spectroscopy provides information about elemental composition of the pigments. Analysis results identified various coloring materials: inorganic pigment, such as lead white, minium, cinnabar, and orpiment, as well as organic pigment such as gamboge and indigo. Therefore, it is possible to obtain more information for the identification of pigments; organic pigment and mixed or overlaid pigments, while at the same time minimizing the collection sample and simplifying the analysis procedure compared to previously used methods. The results of this study will be used as basic data for the analysis of painting cultural heritage through a non-destructive in situ method in the future.

Comparison of In-situ Er-doped GaN with Er-implanted GaN Using Photoluminescence and Photoluminescence Excitation Spectroscope (In situ Er 도핑된 GaN와 Er이 이온 주입된 GaN의 PL과 PLE 비교에 대한 연구)

  • 김현석;성만영;김상식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 2003
  • Photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopy have been performed at 6 K on the 1540 nm $^4$I$\_$(13/2)/\longrightarrow$^4$I$\_$(15/2)/ emission of Er$\^$+3/ in in situ Er-doped GaN The PL and PLE spectra of in situ Er-doped GaN are compared with those of Er-implanted GaN in this study. The lineshapes of the broad PLE absorption bands and the broad PL bands in the spectra of the in situ Er-doped GaN are similar to those in Er-doped glass rather than in the Er-implanted GaN. The PL spectra of this in situ Er-doped GaN are independent of excitation wavelength and their features are significantly different from the site-selective PL spectra of the Er-implanted GaN. These PL and PLE studies reveal that a single type of Er$\^$3+/ sites is present in the in situ Er-doped GaN and these Er sites are different from those observed in the Er-implanted GaN. In addition, the comparison of the PL single strength illustrates that the excitation of Er$\^$3+/ sites through the energy absorption of defects in Er-implanted GaN.

Kinetics of Acrylamide Solution Polymerization Using Potassium Persulfate as an Initiator by in situ IR

  • Kang, Shin-Choon;Park, Yoo-Jeong;Kim, Hyung-Zip;Kyong, Jin-Burm;Kim, Dong-Kook
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.107-111
    • /
    • 2004
  • We have studied the polymerization kinetics of acrylamide in aqueous solution with potassium persulfate as an initiator by using quantitative real-time in situ IR spectroscopy and monitoring the profiles of peaks in the range 1900-850 cm$\^$-1/. The conversion of acrylamide was calculated from the disappearance of the peak at 988 cm$\^$-1/, which is the out-of-plane bending mode of the=C-H unit, normalized to the C=O stretching peak at 1675 cm$\^$-1/, as an internal standard. For reaction temperatures in the range 40-65$^{\circ}C$ and initiator and monomer concentrations of 0.9-2.6 mmol/L and 0.5-1.1 mol/L, respectively, we deduced that the rate of monomer consumption follows the relation R$\_$p/=k[K$_2$S$_2$O$\_$8/]$\^$0.5/ [Μ]$\^$1.35${\pm}$0.10/. In addition, we obtained activation parameters from an evaluation of the kinetic data.

In-situ Raman Spectroscopy of Amorphous Hydrous $RuO_2$ Thin Films

  • Hyeonsik Cheong;Jung, Bo-Young;Lee, Se-Hee
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.49-51
    • /
    • 2003
  • Amorphous hydrous ruthenium oxide thin films have attracted much interest owing to the possibility of using this material in electrochemical supercapacitors. Recently, it was found that this material is also electrochromic: during the charging/discharging cycle, the optical transmittance of the thin film is modulated. The physical and chemical origin of this phenomenon is not fully understood yet. In this work, we performed in-situ Raman spectroscopy measurements on amorphous hydrous ruthenium oxide thin films during the charging/discharging cycles. Unambiguous changes in the Raman spectrum were observed as protons were injected or extracted from the thin film. When the samples were annealed to reduce the water content, there is a consistent trend in the Raman spectrum. The origins of the Raman features and their relation to the electrochromic and/or supercapacitor characteristics is discussed.

Templated Formation of Silver Nanoparticles Using Amphiphilic Poly(epichlorohydrine-g-styrene) Film

  • Park, Jung-Tae;Koh, Joo-Hwan;Seo, Jin-Ah;Roh, Dong-Kyu;Kim, Jong-Hak
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.301-306
    • /
    • 2009
  • This work has demonstrated that a novel amphiphilic poly(epichlorohydrine)-graft-polystyrene (PECH-g-PS) copolymer at 34:66 wt% was synthesized via atom transfer radical polymerization (ATRP) of styrene using PECH as a macroinitiator. The structure of the graft copolymer was characterized by nuclear magnetic resonance ($^1H$ NMR) and FTIR spectroscopy, demonstrating that the "grafting from" method using ATRP was successful. The self-assembled graft copolymer was used as a template film for the in-situ growth of silver nanoparticles from $AgCF_3SO_3$ precursor under UV irradiation. The in situ formation of silver nanoparticles with 6-8 nm in average size in the solid state template film was confirmed by transmission electron microscopy (TEM), UV-visible spectroscopy and wide angle X-ray scattering (WAXS). Differential scanning calorimetry (DSC) also displayed the selective incorporation and the in situ formation of silver nanoparticles within the hydrophilic PECH domains, probably due to stronger interaction of the silvers with the ether oxygens of PECH backbone than that with hydrophobic PS side chains.