Kinetics of Acrylamide Solution Polymerization Using Potassium Persulfate as an Initiator by in situ IR

  • Published : 2004.02.01

Abstract

We have studied the polymerization kinetics of acrylamide in aqueous solution with potassium persulfate as an initiator by using quantitative real-time in situ IR spectroscopy and monitoring the profiles of peaks in the range 1900-850 cm$\^$-1/. The conversion of acrylamide was calculated from the disappearance of the peak at 988 cm$\^$-1/, which is the out-of-plane bending mode of the=C-H unit, normalized to the C=O stretching peak at 1675 cm$\^$-1/, as an internal standard. For reaction temperatures in the range 40-65$^{\circ}C$ and initiator and monomer concentrations of 0.9-2.6 mmol/L and 0.5-1.1 mol/L, respectively, we deduced that the rate of monomer consumption follows the relation R$\_$p/=k[K$_2$S$_2$O$\_$8/]$\^$0.5/ [Μ]$\^$1.35${\pm}$0.10/. In addition, we obtained activation parameters from an evaluation of the kinetic data.

Keywords

References

  1. Eur. Polym. J. v.16 V.F.Kurenkov;V.A.Mysgchenkov https://doi.org/10.1016/0014-3057(80)90030-0
  2. J. Polym. Sci. Part A-1 v.5 J.P.Riggs;F.Rodiguez https://doi.org/10.1002/pol.1967.150051215
  3. Eur. Polym. J. v.37 H.L.Lin https://doi.org/10.1016/S0014-3057(00)00261-5
  4. Macromolecules v.24 D.Hunkeler
  5. Korea Polym. J. v.6 K.C.Lee;H.J.Seo;J.M.Park
  6. Korea Polym. J. v.8 M.R.Cho;Y.K.Han;B.S.Kim
  7. Macromol. Res. v.10 K.C.Lee;S.E.Lee;B.K.Song https://doi.org/10.1007/BF03218263
  8. ACS Symposium Series no.598 S.Y.Chang;N.S.Wang
  9. Macromolecules v.26 T.E.Long;H.Y.Liu;D.M.Schell;D.M.teegarden;D.S.Uerz https://doi.org/10.1021/ma00075a018
  10. Polym. Bull. v.40 J.E.Puskas;M.G.Lanzendoerfer;W.E.Pattern https://doi.org/10.1007/s002890050223
  11. Macromolecules v.31 R.F.Storey;A.B.Donnalley;T.L.Maggio https://doi.org/10.1021/ma971293s
  12. Symposium held at the 221st ACS National Meeting J.E.Puskas;T.E.Long;R.F.Storey
  13. Eur. Polym. J. v.37 D.Benda;J.Souparek https://doi.org/10.1016/S0014-3057(00)00240-8
  14. Eur. Polym. J. v.20 W.Bade;K.H.Reichert https://doi.org/10.1016/0014-3057(84)90034-X
  15. PhD Thesis, Lehigh University D.L.Visioli
  16. Trans. Faraday. Soc. v.53 E.Collinson;F.S.Dainton;G.S.McNaughton https://doi.org/10.1039/tf9575300476
  17. Trans. Faraday. Soc. v.53 E.Collinson;F.S.Dainton;G.S.McNaughton https://doi.org/10.1039/tf9575300489
  18. Polym. Adv. Technol. v.7 J.Mijovic;S.Andjelic;J.M.Kenny https://doi.org/10.1002/(SICI)1099-1581(199601)7:1<1::AID-PAT480>3.0.CO;2-N
  19. J. Korean Ind. Eng. Chem. v.13 J.K.Kim;H.K.Cho;S.T.Noh;S.C.Kang
  20. Polymer v.24 C.H.Bamford;E.Schofield https://doi.org/10.1016/0032-3861(83)90030-7
  21. J. Macromol. Chem. v.175 G.S.Mishra;J.Rebellow https://doi.org/10.1002/macp.1974.021751107
  22. J. Macromol. Chem. v.13 G.S.Mishra;U.D.N.Bajpai
  23. Polym. Int. v.46 K.Behari;K.Taunk;R.Das https://doi.org/10.1002/(SICI)1097-0126(199806)46:2<126::AID-PI976>3.0.CO;2-A
  24. Trans. Faraday. Soc. v.53 F.S.Dainton;M.Tordoff https://doi.org/10.1039/tf9575300666
  25. J. Appl. Polym. Sci. v.17 T.Ishige;A.E.Hamielec https://doi.org/10.1002/app.1973.070170515
  26. Makromol. Chem. v.73 E.A.S.Cavell https://doi.org/10.1002/macp.1964.020730112
  27. J. Polym. Sci. Part A-1 v.5 K.Venkatarao;M.Santappa https://doi.org/10.1002/pol.1967.150050321