• 제목/요약/키워드: in situ spectroscopy

검색결과 271건 처리시간 0.021초

Synthesis and characterization of polybenzoxazole/graphene oxide composites via in situ polymerization

  • Lim, Jun;Kim, Min-Cheol;Goh, Munju;Yeo, Hyeounk;Shin, Dong Geun;Ku, Bon-Cheol;You, Nam-Ho
    • Carbon letters
    • /
    • 제14권4호
    • /
    • pp.251-254
    • /
    • 2013
  • In this study, poly(amic acid) was prepared via a polycondensation reaction of 3,3'-dihydroxybenzidine and pyromellitic dianhydride in an N-methyl-2-pyrrolidone solution; reduced graphene oxide/polybenzoxazole (r-GO/PBO) composite films, which significantly increased the electrical conductivity, were successfully fabricated. GO was prepared from graphite using Brodie's method. The GO was used as nanofillers for the preparation of r-GO/PBO composites through an in situ polymerization. The addition of 50 wt% GO led to a significant increase in the electrical conductivity of the composite films by more than sixteen orders of magnitude compared with that of pure PBO films as a result of the electrical percolation networks in the r-GO during the thermal treatment at various temperatures within the films.

In situ Photoacoustic Study of Water Gas Shift Reaction over Magnetite/Chromium Oxide and Copper/Zinc Oxide Catalysts

  • Byun, In-Sik;Choi, Ok-Lim;Choi, Joong-Gill;Lee, Sung-Han
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권11호
    • /
    • pp.1513-1518
    • /
    • 2002
  • Kinetic studies on the water-gas shift reaction catalyzed by magnetite/chromium oxide and copper/zinc oxide were carried out by using an in situ photoacoustic spectroscopic technique. The reactions were performed in a closed-circulation reactor system using a differential photoacoustic cell at total pressure of 40 Torr in the temperature range of 100 to $350^{\circ}C.$ The CO2 photoacoustic signal varying with the concentration of CO2 during the catalytic reaction was recorded as a function of time. The time-resolved photoacoustic spectra obtained for the initial reaction stage provided precise data of CO2 formation rate. The apparent activation energies determined from the initial rates were 74.7 kJ/mol for the magnetite/chromium oxide catalyst and 50.9 kJ/mol for the copper/zinc oxide catalyst. To determine the reaction orders, partial pressures of CO(g) and H2O(g) in the reaction mixture were varied at a constant total pressure of 40 Torr with N2 buffer gas. For the magnetite/chromium oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.93 and 0.18, respectively. For the copper/zinc oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.79 and 0, respectively.

Synthesis and Properties of Polyimide Composites Containing Graphene Oxide Via In-Situ Polymerization

  • Zhu, Jiadeng;Lee, Cheol-Ho;Joh, Han-Ik;Kim, Hwan Chul;Lee, Sungho
    • Carbon letters
    • /
    • 제13권4호
    • /
    • pp.230-235
    • /
    • 2012
  • In this study, reduced graphene oxide/polyimide (r-GO/PI) composite films, which showed significant enhancement in their electrical conductivity, were successfully fabricated. GO was prepared from graphite using a modified Hummers method. The GO was used as a nanofiller material for the preparation of r-GO/PI composites by in-situ polymerization. An addition of 20 wt% of GO led to a significant decrease in the volume resistivity of composite films by less than nine orders of magnitude compared to that of pure PI films due to the electrical percolation networks of reduced GO created during imidization within the films. A tensile test indicated that the Young's modulus of the r-GO/PI composite film containing 20 wt% GO increased drastically from 2.3 GPa to 4.4 GPa, which was an improvement of approximately 84% compared to that of pure PI film. In addition, the corresponding tensile strength was found to have decreased only by 12%, from 113 MPa to 99 MPa.

Investigation of natural solution effect in electrical conductivity of PANI-CeO2 nanocomposites

  • Shafiee, Mohammad Reza Mohammad;Sattari, Ahmad;Kargar, Mahboubeh;Ghashang, Majid
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.15-22
    • /
    • 2017
  • A green biosynthesis method is described for the preparation of Polyaniline (PANI)-cerium dioxide ($CeO_2$) nanocomposites in different media via in-situ oxidative polymerization procedure. The effect of various media including use of HCl, Lemon Juice, Beverage, White Vinegar, Verjuice and Apple vinegar extracts on the particles size, morphology as well as the conductivity of $PANI-CeO_2$ nanocomposites was investigated. The electron-withdrawing feature of $CeO_2$ increases doping level of PANI and enhances electron delocalization. These cause a significantly blue shift of C = C stretching band of quinoid from $1570cm^{-1}$ to $1585cm^{-1}$. The optical properties of the pure material and polymeric nanocomposites as well as their interfacial interaction in nanocomposite structures analyzed by UV-visible spectroscopy. The DC electrical conductivity (${\sigma}$) of as-prepared HCl doped PANI and a $PANI-CeO_2$ nanocomposite measured by a four-probe method at room temperature was studied.

실시간 XRD와 TEM을 이용한 MAPbI3의 온도 변화에 따른 구조 분석 (Investigation of Electron Thermally Induced Phase Transition in MAPbI3 Perovskite Solar Cells Using In-Situ XRD and TEM)

  • 최진석;엄지호;윤순길
    • 한국전기전자재료학회논문지
    • /
    • 제32권1호
    • /
    • pp.64-69
    • /
    • 2019
  • Methylammonium lead triiodide ($MAPbI_3$)-based perovskite solar cells potentially have potential advantages such as high efficiency and low-cost manufacturing procedures. However, $MAPbI_3$ is structurally unstable and has low phase-change temperatures ($30^{\circ}C$ and $130^{\circ}C$); it is necessary to solve these problems. We investigated the crystal structure and phase separation using real-time temperature-change X-ray diffraction, transmission electron microscopy, and electron energy loss spectroscopy. $MAPbI_3$ has a tetragonal structure, and at about $35^{\circ}C$ the c-axis contracts, transforming $MAPbI_3$ into the related cubic crystal structure. In addition, at $130^{\circ}C$, phase separation occurs in which $CH_3NH_2$ and HI at the center of the unit cell of the perovskite structure are extracted by gas, leavingand only $PbI_2$ of the three-component structure, is produced as the final solid product.

In-Situ 분석법에 의한 연료전지 특성 연구 (PEMFC Characterization Study by in-situ Analysis Method)

  • 김영민;이종현;임세준;안병기;임태원
    • 한국수소및신에너지학회논문집
    • /
    • 제20권3호
    • /
    • pp.208-215
    • /
    • 2009
  • PEMFC stack power output is needed to be around 100 kW to meet the requirements of automotive application and scaling-up the active area of the stack cells will allow a higher power. In the case of scaling-up the active area of cells, it is difficult to obtain uniform in-plane internal conditions such as temperature, relative humidity and stoichiometry of the feed gas. These ununiformity with the location in the cell would affect both the performance and durability of the stack, so it is important to understand phenomena in the cell for improving them. In this study, the current density, electrochemical resistance and performance distribution measurement was performed to understand the ununiformity in a single cell using in-situ method; (1) Current Density Distribution (CDD) Device and (2) Segmented Cell Fixture. The influence of location of feed gas on the performance of a single cell was experimentally measured and discussed by using a segmented single cell which was composed of 8 compartments. The correlation between the location and performance in a single cell was discussed by these two tools and it was extended between the local characterization and the durability in a MEA by comparing the used cell with a fresh one. It was also studied in terms of electrochemistry by Electrochemical Impedance Spectroscopy.

A Possible Merge of FRET and SPR Sensing System for Highly Accurate and Selective Immunosensing

  • Lee, Jae-Beom;Chen, Hongxia;Lee, Jae-Wook;Sun, Fangfang;Kim, Cheol-Min;Chang, Chul-Hun L.;Koh, Kwang-Nak
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권12호
    • /
    • pp.2905-2908
    • /
    • 2009
  • Immuno-sensing for high accurate and selective sensing was performed by fluorescence spectroscopy and surface plasmon resonance (SPR), respectively. Engineered assembly of two fluorescent quantum dots (QDs) with bovine serum albumin (BSA) and anti-BSA was fabricated in PBS buffer for fluorescence analysis of fluorescence resonance energy transfer (FRET). Furthermore, the same bio-moieties were immobilized on Au plates for SPR analysis. Naturally-driven binding affinity of immuno-moieties induced FRET and plasmon resonance angle shift in the nanoscale sensing system. Interestingly, the sensing ranges were uniquely different in two systems: e.g., SPR spectroscopy was suitable for highly accurate analysis to measure in the range of 10$^{-15{\sim}-10$ng/mL while the QD fluorescent sensing system was relatively lower sensing ranges in 10$^{-10{\sim}-6$ng/mL. However, the QD sensing system was larger than the SPR sensing system in terms of sensing capacity per one specimen. It is, therefore, suggested that a mutual assistance of FRET and SPR combined sensing system would be a potentially promising candidate for high accuracy and reliable in situ sensing system of immune-related diseases.

페로브스카이트 촉매에 의한 액화수소의 올소-파라 수소변환특성에 관한 연구 (A Study on the Ortho-para Hydrogen Conversion Characteristics of Liquefied Hydrogen by Perovskite Catalysts)

  • 나인욱;김정현;;권순철;오인환
    • 한국수소및신에너지학회논문집
    • /
    • 제26권1호
    • /
    • pp.15-20
    • /
    • 2015
  • During the liquefaction of hydrogen, the ortho hydrogen is converted into the para form with heat release that evaporates the liquefied hydrogen into the gaseous one backwards. The ortho-para conversion catalysts are usually used during liquefaction to avoid such boil-off. In order to compare and analyze the performance of the ortho-para hydrogen conversion catalysts, in-situ FT-IR device was designed and manufactured to measure the para hydrogen conversion rate in real-time. $LaFeO_3$ and $La_{0.7}Sr_{0.3}Cu_{0.3}Fe_{0.7}O_3$ perovskite catalysts were prepared by the citrate sol-gel method and their spin conversion characteristics from ortho to para hydrogen were investigated by in-situ FTIR spectroscopy at 17K. It was found that the spin conversion was affected by surface area, particle size, and crystallite size of the catalysts. Thus, the $La_{0.7}Sr_{0.3}Cu_{0.3}Fe_{0.7}O_3$ perovskite catalyst that had higher surface area, higher crystallite size, and smaller particle size than $LaFeO_3$ showed the better spin conversion property of 32.3% at 17K in 120min interaction with the perovskite catalysts.

Platinum-Catalyzed and Ion-Selective Polystyrene Fibrous Membrane by Electrospinning and In-Situ Metallization Techniques

  • Hong, Seung-Hee;Lee, Sun-Ae;Nam, Jae-Do;Lee, Young-Kwan;Kim, Tae-Sung;Won, Sung-Ho
    • Macromolecular Research
    • /
    • 제16권3호
    • /
    • pp.204-211
    • /
    • 2008
  • A platinum-catalyzed polyelectrolyte porous membrane was prepared by solid-state compression of electrospun polystyrene (PS) fibers and in-situ metallization of counter-balanced ionic metal sources on the polymer surface. Using this ion-exchange metal-polymer composite system, fiber entangled pores were formed in the interstitial space of the fibers, which were surrounded by sulfonic acid sites ($SO_3^-$) to give a cation-selective polyelectrolyte porous bed with an ion exchange capacity ($I_{EC}$) of 3.0 meq/g and an ionic conductivity of 0.09 S/cm. The Pt loading was estimated to be 16.32 wt% from the $SO_3^-$ ions on the surface of the sulfonated PS fibers, which interact with the cationic platinum complex, $Pt(NH_3)_4^{2+}$, at a ratio of 3:1 based on steric hindrance and the arrangement of interacting ions. This is in good agreement with the Pt loading of 15.82 wt% measured by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The Pt-loaded sulfonated PS media showed an ionic conductivity of 0.32 S/cm. The in-situ metallized platinum provided a nano-sized and strongly-bound catalyst in robust porous media, which highlights its potential use in various electrochemical and catalytic systems.

초고진공 전자공명 플라즈마를 이용한 SiC buffer layer 형성에 관한 연구 (A Study on SiC Buffer Layer Prepared by Ultra High Vacuum Electron Cyclotron Resonance CVD)

  • 전우곤;표재확;황기웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.326-328
    • /
    • 1995
  • SiC buffer layers were grown on Si(100) substrates by ultra-high-vacuum electron cryclotron resonance plasma (UHV ECR plasma) from $CH_4/H_2$ mixture at 700$^{\circ}C$. The electron densities and temperature were measured by single probe. The axial plasma potentials measured by emissive probe had the double layer structure at positive substrate bias. Piranha cleaning was carried out as ex-situ wet cleaning. Clean and smooth silicon surface were prepared by in-situ hydrogen plasma cleaning at 540$^{\circ}C$. A short exposure to hydrogen plasma transforms the Si surface from 1$\times$1 to 2$\times$1 reconstruction. It was monitored by reflection high energy electron diffraction (RHEED). The defect densities were analysed by the dilute Schimmel etching. The results showed that the substrate bias is important factor in hydrogen plasma cleaning. The low base pressure ($5\times10^{-10}$ torr) restrains the $SiO_2$ growth on silicon surface. The grown layers showed different characteristics at various substrate bias. RHEED and K-ray Photoelectron spectroscopy study showed that grown layer was SiC.

  • PDF